Skip to main content

2023 New Features

Master Data Management

User Interactions

Add / Edit Administration Attribute

  • Step 1: Click the "Add Attribute" button.
  • Step 2: Fill in the attribute name and select the type (e.g., "Value","Option", "Multiple Option", "Aggregate").
  • Step 3: If the attribute type is "Option,Multiple Option or Aggregate" click the "+" button to add more options.
  • Step 4: Click "Submit" to save.
  • Step 5: Confirmation message appears.
  • Step 6: Options to return to the attributes list, add another attribute, or manage existing attributes.

API: administration-attribute-crud

Add / Edit Administration

  • Step 1: Click "Add New Administration" or select an administrative area to edit.
  • Step 2: Select Level Name.
  • Step 3: Select the parent administration using a cascading drop-down.
  • Step 4: Fill in administration details (name, parent, and code).
  • Step 5: Fill in attributes and their values.
    • For Value type: Input Number
    • For Option and Multiple Option type: Drop-down option
    • For Aggregate: It will shows table with 2 columns, the columns are: name, value
      • Name: the dissagregation name
      • Value: Input Number
  • Step 6: Click "Submit" to save.
  • Step 7: Confirmation message appears.
  • Step 8: Options to return to administration list.

API: administration-crud

Administration / Entity Attribute Types

Option & Multiple Option Values

Use Case

We have a dataset that contains categorical information about the types of land use for various regions. This data will be utilized to classify and analyze land use patterns at the county level.

Feature

To achieve this, we will need to define option values for an attribute. In this scenario, the workflow is as follows:

Define Attribute

  • Attribute Name: Land Use Type
  • Attribute Code: <Unique Identifier>Land_Use_Type
  • Type: Categorical (Option Values)
  • Administration Level: County

Define Option Values

  • Option Name: Residential
    • Option Code: Residential
  • Option Name: Commercial
    • Option Code: Commercial
  • Option Name: Agricultural
    • Option Code: Agricultural

Upload Data for Counties

County Attribute Code Value
County A Land_Use_Type Residential
County B Land_Use_Type Commercial
County C Land_Use_Type Agricultural

In this case, we define the "Option Values" for the "Land Use Type" attribute, allowing us to categorize land use patterns at the county level. The actual data for individual counties is then uploaded using the defined options.

Single Numeric Values

Use Case

We possess household counts from the 2019 census that correspond to the RTMIS administrative list at the sub-county level. This data can be employed to compute the household coverage per county, which is calculated as (# of households in that sub-county in RTMIS / # from the census).

Feature

To achieve this, we need to store the population value for individual sub-counties as part of their attributes. In this scenario, the workflow is as follows:

Define Attribute

  • Attribute Name: Census HH Count
  • Attribute Code: <Unique Identifier>Census_HH_Count
  • Type: Single Numeric Value
  • Administration Level: Sub-County

Upload Data for Individual Sub-Counties

Sub-County Attribute Code Value
CHANGAMWE Census_HH_Count 46,614
JOMVU Census_HH_Count 53,472

In this case, the values for the county level will be automatically aggregated.

Disaggregated Numeric Values

Use Case

We aim to import data from the CLTS platform or the census regarding the count of different types of toilets, and we have a match at the sub-county level. This data will serve as baseline values for visualization.

Feature

For this use case, we need to store disaggregated values for an attribute. To do so, we will:

Define the Attribute

  • Attribute Name: Census HH Toilet Count
  • Attribute Code: <Unique Identifier>Census_HH_Toilet_Count
  • Type: Disaggregated Numeric Values
  • Disaggregation: “Improved”, “Unimproved”
  • Administration Level: Sub-County

Upload Data for Individual Sub-Counties

Sub-County Attribute Code Disaggregation Value
CHANGAMWE Census_HH_Toilet_Count Improved 305,927
CHANGAMWE Census_HH_Toilet_Count Unimproved 70,367

Database Overview

Entities Table

pos table column null dtype len default
1 Entities id   Integer    
2 Entities name   Text    

Entity Data Table

pos table column null dtype len default
1 Entity Data id   Integer    
2 Entity Data entity_id   Integer    
3 Entity Data name   Text    
4 Entity Data administration_id   Integer    

Entity Attributes

pos table column null dtype len default
1 Entity Attributes id   Integer    
2 Entity Attributes entity_id   Integer    
3 Entity Attributes name   Text    

Entity Attributes Options

pos table column null dtype len default
1 Entity Attributes Options id   Integer    
2 Entity Attributes Options entity_attribute_id   Integer    
3 Entity Attributes Options name   Text    

Entity Values

pos table column null dtype len default
1 Entity Values id   Integer    
2 Entity Values entity_data_id   Integer    
3 Entity Values entity_attribute_id   Integer    
4 Entity Values value   Text    

Administration Table

pos table column null dtype len default
1 administrator id NO bigint   administrator_id_seq
2 administrator code YES character varying 255  
3 administrator name NO text    
4 administrator level_id NO bigint    
5 administrator parent_id YES bigint    
6 administrator path YES text    

Administration Attributes

pos table column null dtype len default
1 Administration Attributes id   Integer    
2 Administration Attributes level_id   Integer    
3
Administration Attribute
code

Text

Unique (Auto-Generated)
4 Administration Attributes Type   Enum (Number, Option, Aggregate)
   
5 Administration Attributes name   Text    

Administration Attributes Options

pos table column null dtype len default
1 Administration Attributes Options id   Integer    
2 Administration Attributes Options administration_attributes_id   Integer    
3 Administration Attributes Options name   Text    

Administration Values

pos table column null dtype len default
1 Administration Values id   Integer    
2 Administration Values administration_id   Integer    
3 Administration Values administration_attributes_id Integer      
4 Administration Values value   Integer    
5
Administrative Values
option

Text


Rules:

  • Attribute Type: Numeric
    • value: NOT NULL
    • option: NULL
  • Attribute Type: Option
    • value: NULL
    • option: NOT NULL
  • Attribute Type: Aggregate
    • value: NOT NULL
    • option: NOT NULL

Validation for Option Type

  • If parent has a value for a particular administration_attributes_id, then invalidate the children input.
  • If children have a value for a particular administration_attributes_id, then override the children value.

Materialized View for Aggregation

Visualization Query

id type name attribute option value
1 administration Bantul Water Points Type Dugwell 1
2 entity Bantul School Type of school Highschool 1

API Endpoints

Administration Endpoints

Administration CRUD (POST & PUT)
{
  "parent_id": 1,
  "name": "Village A",
  "code": "VA",
  "attributes": [{
      "attribute":1,
      "value": 200,
    },{
      "attribute":2,
      "value": "Rural",
    },{
      "attribute":3,
      "value": ["School","Health Facilities"],
    },{
      "attribute":4,
      "value": {"Improved": 100,"Unimproved": 200},
    }
  ]
}
Administration Detail (GET)

Query Parameters (for filter):

  • parent_id
  • level
{
  "id": 2,
  "name": "Tiati",
  "code": "BT",
  "parent": {
    "id": 1,
    "name": "Baringo",
    "code": "B"
  },
  "level": {
    "id": 1,
    "name": "Sub-county"
  },
  "childrens": [{
    "id": 2,
    "name": "Tiati",
    "code": "BT"
  }],
  "attributes": [{
      "attribute":1,
      "type": "value",
      "value": 200,
    },{
      "attribute":2,
      "type": "option",
      "value": "Rural",
    },{
      "attribute":3,
      "type": "multiple_option",
      "value": ["School","Health Facilities"],
    },{
      "attribute":4,
      "type": "aggregate",
      "value": {"Improved": 100,"Unimproved": 200},
    }
  ]
}
Administration List (GET)
{
  "current": "self.page.number",
  "total": "self.page.paginator.count",
  "total_page": "self.page.paginator.num_pages",
  "data":[
    {
      "id": 2,
      "name": "Tiati",
      "code": "BT",
      "parent": {
        "id": 1,
        "name": "Baringo",
      },
      "level": {
        "id": 1,
        "name": "Sub-county"
      }
    }
]}
Administration Attributes CRUD (POST & PUT)
{
  "name": "Population",
  "type": "value",
  "options": []
}
Administration Attributes (GET)
[{
  "id": 1,
  "name": "Population",
  "type": "value",
  "options": []
},{
  "id": 2,
  "name": "Wheter Urban or Rural",
  "type": "option",
  "options": ["Rural","Urban"]
},{
  "id": 3,
  "name": "HCF and School Availability",
  "type": "multiple_option",
  "options": ["School","Health Care Facilities"]
},{
  "id": 4,
  "name": "JMP Status",
  "type": "aggregate",
  "options": ["Improved","Unimproved"]
}]

Database Seeder

Administration Seeder

In the updated approach for seeding initial administration data, the shift from using TopoJSON to Excel file format is being implemented. While TopoJSON has been the format of choice, particularly for its geospatial data capabilities which are essential for visualization purposes, the move to Excel is driven by the need for a more flexible and user-friendly data input method.

However, this transition introduces potential challenges in maintaining consistency between the Excel-based administration data and the TopoJSON used for visualization. The inherent differences in data structure and handling between these two formats could lead to discrepancies, impacting the overall data integrity and coherence in the system. This change necessitates a careful consideration of strategies to ensure that the data remains consistent and reliable across both formats.

Key Considerations
  • Data Format and Consistency: The shift to Excel might introduce inconsistencies with the TopoJSON format, especially in terms of data structure and geospatial properties.
  • Data Validation: Robust validation is essential to mitigate errors common in Excel files.
  • Import Complexity: Managing complex Excel structures requires additional parsing mechanisms.
  • Scalability and Performance: Excel's performance with large datasets and memory usage should be monitored.
  • Security and Integrity: Increased risk of data tampering in Excel files, and challenges in version control.
  • Automation and Workflow Integration: Adapting automation processes to accommodate Excel's format variations.
  • User-Provided Data: Dependence on external data updates necessitates clear handling policies.
Excel File Structure for Seeder

File Naming Convention

  • Each Excel file represents a county.
  • File names follow the format: <county_id>-<county_name>.xlsx
  • Example: 101-Nairobi.xlsx, 102-Mombasa.xlsx

File Content Structure

Each file contains details of sub-counties and wards within the respective county.

Sub-County_ID Sub-County Ward_ID Ward
201 Westlands 301 XYZ
201 Westlands 302 ABC
... ... ... ...
Seeder Adaptation
  • Hard-coded National Level: The national level, Kenya, should be hard-coded in the seeder.
  • Dynamic County Processing: The seeder dynamically processes each county file, creating or updating records for sub-counties and wards.
  • File Processing Logic: The seeder reads the file name to determine the county and iterates through each row to seed data for sub-counties and wards.

Administration Attribute Seeder

Assumptions
  • Administration IDs are available and consistent.
  • The attributes are stored in an Excel file, with a structure that includes administration IDs and their corresponding attributes.
Example Excel File Structure
Admin_ID Attribute1 Attribute2 ...
1 Value1 Value2 ...
2 Value1 Value2 ...
... ... ... ...
Seeder Script:
import pandas as pd
from your_app.models import Administration, AdministrationAttribute

class AdministrationAttributeSeeder:
    def __init__(self, file_path):
        self.file_path = file_path

    def run(self):
        # Load data from Excel file
        df = pd.read_excel(self.file_path)

        # Iterate through each row in the DataFrame
        for index, row in df.iterrows():
            admin_id = row['Admin_ID']
            # Retrieve the corresponding Administration object
            administration = Administration.objects.get(id=admin_id)

            # Create or update AdministrationAttribute
            for attr in row.index[1:]:  # Skipping the first column (Admin_ID)
                attribute_value = row[attr]
                AdministrationAttribute.objects.update_or_create(
                    administration=administration,
                    attribute_name=attr,
                    defaults={'attribute_value': attribute_value}
                )

        print("Administration attributes seeding completed.")

# Usage
seeder = AdministrationAttributeSeeder('path_to_your_excel_file.xlsx')
seeder.run()

Notes:

  1. File Path: Replace 'path_to_your_excel_file.xlsx' with the actual path to the Excel file containing the administration attributes, the excel files will be safely stored in backend/source.
  2. Model Structure: This script assumes the existence of Administration and AdministrationAttribute models. Adjust the script according to your actual model names and structures.
  3. update_or_create: This method is used to either update an existing attribute or create a new one if it doesn't exist.
  4. Error Handling: Add appropriate error handling to manage cases where the administration ID is not found or the file cannot be read.