Developer Guidelines

Version Manager

Akvo is using GitHub as main version control system. By using GitHub, we can ensure that our
code-base is well-managed and that changes are thoroughly reviewed and approved before they
are added to the code-base, ultimately improving the quality and stability of our software. Here are
the most important rules of that have to be consider:

Branch Protection Rules

e Require pull request reviews before merging: This rule requires that all changes to a
branch be submitted as a pull request, and that at least one other team member approves
the changes before they can be merged into the main branch.

e Require status checks to pass before merging: This rule requires that certain
conditions be met before a pull request can be merged. For example, we require that all
tests pass in the Cl and certain code quality coverage metrics are met.

e Require a minimum number of reviewers (at least one reviewers): This helps to
ensure that changes are thoroughly reviewed before merging.

e Restrict who can push to the branch: This rule limits who can make changes to a
branch, helping to prevent accidental or unauthorized changes.

Branch Naming

It's important to have a clear and consistent naming convention for your branches. A good naming
convention for Feature Branches is to use the following format: feature/<issue_number>-
<issue_description>. For example, feature/13-backend-test-setup .

Make sure that you have the issue number is available on GitHub

Here's what each part of the naming convention means:

e feature/ : This is a prefix that identifies the branch as a feature branch.

e <issue_number>: This is the number of the issue or task that the branch is related to.

e <issue_description>: This is a brief description of the issue or task. It should be short but
descriptive enough to give an idea of what the branch is about.

Using this naming convention makes it easy to identify which branches are related to which issues
or tasks. It also helps to keep our branches organized and easy to manage.

Pre-Commit Config

Pre-commit config is a configuration file used by the pre-commit framework to define a set of code
checks, also known as "hooks," that are run before code is committed to a version control system.
The pre-commit framework is a tool that allows developers to define and manage these hooks
locally, providing a way to catch errors early and enforce coding standards.

Example: [#363] Pre-commit initial config

It is true that Continuous Integration/Continuous Delivery (CI/CD) pipelines can also catch
errors and enforce coding standards. However, pre-commit hooks have some distinct
benefits that make them complementary to CI/CD pipelines.

Pull Request

In our projects, each team is relatively small, and developers often work independently. This makes
PR (Pull Request) reviews critical, as they allow other developers to understand the project better,
which is essential for cross-team knowledge and backup in case of absence. Although Deden (Lead
Developer) is the primary person responsible for reviewing code, it is not mandatory that he
handles every review.

Benefits of Code Reviews

e They help ensure code quality, maintainability, and alignment with the project’s goals.
e They allow the team to share knowledge about features and code structures, reducing
bottlenecks when someone is unavailable.

e They encourage best practices, such as adhering to DRY, KISS, and YAGNI principles.
e They provide a learning opportunity for both the code author and the reviewer.

As a Requester

1. Move the Task to the PR Review Section
Move the task related to the feature you're asking to be reviewed into the PR Review
section on the Asana's current Sprint board (e.g. Sprint #2).

2. Provide the PR Link
Ensure that the GitHub PR link is added to the "GitHub" field in the Asana task.

|

3. Assign a Reviewer
Assign the reviewer for your code in Asana. Talk to the Lead Developer on your project to
confirm who to assign the PR too. Usually one person is appointed for a project, but we
remain flexible based on the workload of said person and the timeliness needed for the
review. Escalate to the Delivery Manager or CTO if you are blocked.

4. Assign the Reviewer in GitHub
Don’t forget to also assign the same reviewer in the GitHub PR.

https://github.com/akvo/isco/commit/c3cb3a46bf97614fc150a10af91c37e2a38b3e0f
https://wiki.cloud.akvo.org/books/tech-team-operations/page/developer-guidelines#bkmrk-code-quality-standar
https://wiki.cloud.akvo.org/uploads/images/gallery/2023-05/cMWH0fPUnb0KIjFu-asana-pr.png

5. Follow Up on Delayed Reviews
If the assigned reviewer hasn’t been able to review your code after 2 days, report it in the

relevant Slack channel, mentioning the reviewer. You can use #team-tech-general or

the specific project’'s channel #proj-<project-name>-tech. Escalate to the Delivery
Manager or CTO if you remain blocked.

6. Ensure Cl Passing and Test Coverage
Make sure your code passes all Cl checks. Additionally, unit tests are mandatory, or at the
very least, integration tests (e.g., testing APl endpoints) should be included if it's a back-
end feature

(2]

&5k dedenbangkit

feature/53-translation-for-data-review akvo/national-wash-mis

This branch has not been deployed

ci'semaphoreci/push: National WASH MIS

/) This pull request is still a work in progress

» Reviews

1 change requested

As a Reviewer

1. Check PR Readiness
Confirm that the code is marked as "Ready to Review" in both GitHub and Asana. If the PR
is still in draft or missing the GitHub PR link in Asana, notify the requester to update it.

2. Ensure Cl Status
If the PR hasn’t passed the ClI checks, reassign the task back to the requester and move
the task to the In Progress section.

3. Understand the Feature’s Context
Carefully read the task description in Asana, paying special attention to the goals and
purpose outlined in the Tech AC (Acceptance Criteria) section or Low-Level Design. Check
if there’s a QA plan—if so, you might want to manually test the feature as well.

4. Run and Inspect the Code (if necessary)
For larger or more complex PRs, run the code locally. Also, review code quality by running
linters or quality checks if required. Evaluate the code’s adherence to best practices like.

https://akvo.slack.com/archives/C04NX5N4WHF

5. Log Your Review Time
Track the time you spend reviewing the code. The review ideally should not takes longer
than an hour, log your time in the Asana task itself and Clockwise (or General, with
notes) to accurately reflect the effort.

6. Check the Target Branch
Ensure that the PR is targeting the correct branch (usually main) since the QA team will
test the code manually after it’'s deployed to the main branch.

When the Review is Completed

1. Reassign to the Developer
Once the review is done, reassign the task back to the developer. Keep the task in the PR
Review section on Asana.

2. Move to QA if Necessary
If you know who the QA person is, move the task to the QA section in Asana and assign it
to the appropriate person. The QA is typically the Project Manager, who may not be highly
technical. If there’s nothing for them to test, you can simply mark the task as "Done."

3. Limit Feedback Cycles
It is desirable to keep the number of iterations to a minimum as each iteration can add
delays to the development process. The author of the PR should ensure that they have
done thorough testing and review before submitting the PR for review, and try to
incorporate feedback as much as possible in a single iteration.

As a general rule of thumb, most teams aim to keep the number of iterations between 1 and
3

Code Format

A consistent code format is important for several reasons:

1. Readability: A consistent code format makes it easier for team members to read and
understand the code, even if they didn't write it themselves.

2. Maintainability: Consistent formatting makes it easier to maintain the code over time.
When code is formatted consistently, it's easier to spot errors and to make changes to the
code without introducing new errors.

3. Collaboration: Consistent formatting makes it easier for team members to collaborate on
code. If everyone is following the same format, it's easier to understand each other's code
and to work together to solve problems.

Prettier - JavaScript

Some common best practices for JavaScript code formatting include:

Using consistent indentation, such as two or four spaces per level

Using camelCase for variable and function names

Placing opening braces on the same line as the associated statement or declaration
Using semicolons to terminate statements

Using single quotes for strings, unless the string contains a single quote

e Using === and !== instead of == and != for comparisons
e Limiting line lengths to 80-120 characters to improve readability.

Example: .prettier.json

{

"trailingComma": "es5",
"tabWidth": 2,
"useTabs": false,
"semi": true,
"singleQuote": true,
"printWidth": 80,

"singleAttributePerLine": true

Python - Black

e Indentation: Use four spaces per indentation level. Avoid using tabs or a mix of tabs and

spaces for indentation.

Line length: Keep lines of code to a maximum of 79 characters. If a line needs to be
longer, break it into multiple lines.

Naming conventions: Use lowercase letters for variable names, and separate words with
underscores. Use Capitalized for class names, and lowercase_with_underscores for
module names.

Imports: Import one module per line, and place imports at the top of the file. Use relative
imports for intra-package imports.

Function and class definitions: Use two blank lines to separate function and class
definitions from other code.

Blank lines: Use blank lines to separate logical sections of code. For example, use a single
blank line to separate method definitions in a class.

Example: setup.cfg

[flake8]

max-line-length = 79

inline-quotes = single

accept-encodings = utf-8

isort-show-traceback = True

Excluding some directories:

exclude = .git, _pycache _

[tool.black]
line-length = 79

Text Editor Setup

Visual Studio Code

To use the Flake8 in VS Code, you can install the "Python" extension from the VS Code
marketplace. This extension provides a built-in linter that can use the Flake8 configuration in your
setup.cfg file. Once you have the extension installed, open a Python file in VS Code and the linter
should automatically start providing feedback on your code.

To use the Black in VS Code, you can install the "Python" extension and the "Black" extension from
the VS Code marketplace. Once you have both extensions installed, you can enable Black as the
default formatter by adding the following line to your VS Code settings:

"python.formatting.provider": "black"

With this setting enabled, VS Code will automatically format your code using Black whenever you
save a Python file. You can also customize how VS Code reads your setup.cfg file by adding the
following line to your VS Code settings:

"python.linting.flake8Path": "/path/to/flake8"

To auto-format your JavaScript code using Prettier in Visual Studio Code (VS Code), you can install
the Prettier extension from the VS Code marketplace. This extension provides automatic code
formatting using the Prettier code formatter.

Open your VS Code settings by pressing Ctrl+, (Windows and Linux) or Command+, (macQS). In
the search bar at the top of the settings window, search for "Prettier". Under "Prettier: Config Path"
enter the path to your .prettier.json configuration file. With these settings in place, whenever you
save a JavaScript file in VS Code, the Prettier extension will automatically format your code
according to the options specified in your .prettier.json configuration file.

Vim / Neo-Vim

You can also use the Prettier and Black in Vim by adding the following lines to your Vim
configuration file:

" Format code using Black and Prettier when saving
augroup autoformat
autocmd!
autocmd BufWritePre *.py :%!black -
autocmd BufWritePre *.js :silent! %!prettier --stdin --semi --single-quote --no-bracket-spacing --tab-width 2

augroup END

GNU Emacs

For Emacs, you can use the before-save-hook feature to run a command before saving the file. Add
following lines to your ~/.emacs.d/init.el:

;; Format Python code using Black when saving
(defun format-python-code-with-black ()
(when (eq major-mode 'python-mode)
(progn
(call-process-region
(point-min) (point-max) "black" t t nil "-")

(save-buffer))))

;; Format JavaScript code using Prettier when saving
(defun format-javascript-code-with-prettier ()
(when (eq major-mode 'js-mode)
(progn
(call-process-region
(point-min) (point-max) "prettier" t t nil "--stdin" "--single-quote" "--no-bracket-spacing" "--tab-width=2")

(save-buffer))))

(add-hook 'before-save-hook #'format-python-code-with-black)

(add-hook 'before-save-hook #'format-javascript-code-with-prettier)

‘ Please ask questions or raise concerns if you're not sure how to follow the code format

Quality Control

These standards is defined by Project maintainer / Team Lead, it should follow best practices
and established coding conventions. There are many aspects to code quality, but some common
factors include:

1. Readability: The code should be easy to understand and follow, with clear and consistent
formatting and naming conventions.

2. Maintainability: The code should be modular and easy to modify, with clear separation
of concerns and a well-defined structure.

3. Efficiency: The code should be optimized for performance and resource usage, with
efficient algorithms and data structures.

4. Robustness: The code should handle errors and unexpected inputs gracefully, with
appropriate error handling and testing.

5. Security: The code should be designed with security in mind, with appropriate measures
to protect against potential vulnerabilities and attacks.

Example python code that following code quality standards:

def calculate_average(numbers):
if not isinstance(numbers, list):

raise TypeError("Input must be a list of numbers.")

if len(numbers) ==

return 0

total = sum(numbers)

return total / len(numbers)

This code is a function that calculates the average of a list of numbers. It follows some good coding
practices, such as:

e Checking the input parameter to make sure it's a list before proceeding

e Handling the case where the input list is empty

e Using descriptive variable names that make the code easier to understand

e Using Python's built-in functions like isinstance and sum to write concise and readable
code

e Raising a meaningful exception when the input is not of the expected type

On the other hand, here's an example of bad code that doesn't follow code quality standards:

def avg(numl, num2, num3):
if not isinstance(num1, (int, float)):
return "num1 must be a number"
if not isinstance(num?2, (int, float)):
return "num2 must be a number"
if not isinstance(num3, (int, float)):

return "num3 must be a number"

sum = numl + num2 + num3
average = sum/ 3

return average

This code also calculates the average of three numbers, but it's written in a way that violates good
coding practices, such as:

Hard-coding the number of input parameters, which would require changing the code if
we wanted to calculate the average of more or fewer numbers

Returning a string message instead of raising an exception when the input is not of the
expected type

Using a variable name sum that's the same as a built-in Python function, which can cause
confusion and errors

Not handling cases where the input values might be invalid or lead to errors

There are also several principles that are widely recognized as important for writing high-quality
code. Here are some of the most important ones:

SOLID

SOLID is an acronym for a set of principles that were developed to guide object-oriented design.
The principles are:

P wWwhH

Single Responsibility Principle: Each class should have a single responsibility.
Open-Closed Principle: Classes should be open for extension but closed for modification.
Liskov Substitution Principle: Sub-types should be substitutable for their base types.
Interface Segregation Principle: Clients should not be forced to depend on interfaces they
don't use.

Dependency Inversion Principle: High-level modules should not depend on low-level
modules; both should depend on abstractions.

Code example:

class Circle:

def __init_ (self, radius):

self.radius = radius

def area(self):

return 3.14 * (self.radius ** 2)

class Square:

def __init_ (self, side):

self.side = side

def area(self):

return self.side * self.side

shapes = [Circle(5), Square(10)]

total_area = sum(shape.area() for shape in shapes)

This code defines two classes, Circle and Square , each with a single responsibility of calculating its
own area. This adheres to the Single Responsibility Principle of SOLID. Both classes use a common
interface (the area() method) that makes them interchangeable, which adheres to the Liskov

Substitution Principle. The code is also open to extension (adding new shapes) but closed to
modification, which adheres to the Open-Closed Principle.

Example of code that does not follow SOLID:

class User:
def _init_ (self, name, email):
self.name = name

self.email = email

def save(self):
Code to save user to database

pass

class UserManager:
def _init_ (self):

self.users =[]

def add_user(self, name, email):
user = User(name, email)
self.users.append(user)

user.save()

This code defines two classes, User and UserManager . The User class has the responsibility of
storing information about a single user, and the UserManager class has the responsibility of
managing a list of users and saving them to a database. However, the UserManager class violates

the Single Responsibility Principle by having both responsibilities of creating users and saving them
to the database. This makes the code harder to maintain and test.

References:

e https://towardsdatascience.com/solid-coding-in-python-1281392a6a94

e https://realpython.com/solid-principles-python

https://towardsdatascience.com/solid-coding-in-python-1281392a6a94
https://realpython.com/solid-principles-python

DRY - Don't Repeat Yourself

This principle states that we should avoid duplicating code and instead aim to write code that is
reusable and modular.

Code Example:

DRY approach
def calculate_sum(numbers):

return sum(numbers)

def calculate_average(numbers):
if not numbers:
return 0

return calculate_sum(numbers) / len(numbers)

This code calculates the sum and average of a list of numbers. Instead of duplicating the code to
sum and average the list of numbers, the calculate_ sum function is defined and reused in the
calculate_average function. This makes the code more concise, easier to maintain and less error-
prone.

Example of code that does not follow DRY:

Not DRY approach
def calculate_sum(numbers):
total = 0
for num in numbers:
total += num

return total

def calculate_average(numbers):
total = 0
for num in numbers:
total += num
if len(numbers) ==
return O

return total / len(numbers)

This code also calculates the sum and average of a list of numbers, but it repeats the code to
calculate the sum in both functions. This makes the code longer, harder to maintain and more
error-prone. If a bug is found in the sum calculation, it would have to be fixed in both functions.

By refactoring the code to follow the DRY principle, we could improve the code quality and avoid
duplicating code. This would lead to more maintainable and efficient code in the long run.

References:

e https://realpython.com/lessons/zen-of-python/

e https://medium.com/technology-hits/dry-dont-repeat-yourself

KISS - Keep It Simple, Stupid

This principle suggests that we should aim for simplicity in our code and avoid unnecessary
complexity.

Code Example:

def is_palindrome(word):

return word == word[::-1]

Above code defines a function that checks whether a given word is a palindrome (i.e. reads the
same backward as forward). The function is concise and easy to understand, adhering to the KISS
principle.

Example of code that does not follow KISS:

def calculate_fibonacci(n):
ifn==
return O
elif n ==
return 1
else:

return calculate_fibonacci(n-1) + calculate_fibonacci(n-2)

This code defines a function that calculates the nth number in the Fibonacci sequence recursively.
While this code is functional, it can be hard to read and understand, especially for those who are
not familiar with the Fibonacci sequence or recursive functions. This violates the KISS principle by
introducing unnecessary complexity.

References:

e https://code-specialist.com/code-principles/kiss

e https://softwareengineering.stackexchange.com/questions/178294/kiss-principle-applied-

to-programming-language-design

https://realpython.com/lessons/zen-of-python/
https://medium.com/technology-hits/dry-dont-repeat-yourself-c1a8086530be
https://code-specialist.com/code-principles/kiss
https://softwareengineering.stackexchange.com/questions/178294/kiss-principle-applied-to-programming-language-design
https://softwareengineering.stackexchange.com/questions/178294/kiss-principle-applied-to-programming-language-design

YAGNI - You Aren't Gonna Need It

This principle suggests that we should avoid adding functionality to our code until we actually need
it.

Code Example:

def multiply_numbers(numl, num?2):

return numl * num?2

This code defines a function that multiplies two numbers together. It does only what is needed for
the immediate task and does not add any unnecessary functionality.

Example of code that does not follow YAGNI:

class Question:
def _init_ (self, name: str, options: list, type: TypeEnum):
self.name = name
self.options = options

self.type = type

def set_options(self, options):

self.options = options

This code defines a Question class with several attributes and methods, including attributes for
options , and methods for adding options for the options attribute. However, it's unclear whether all
of these attributes and methods will be used in the immediate project, and whether they will be
needed in the future. By Adding unnecessary functionality and complexity to the code violates the
YAGNI principle.

References:

e https://dev.to/richardwynn/yagni-principle-in-100-seconds-1i6j

e https://solidstudio.io/blog/deep-dive-into-kiss-and-yagni

Clean Code

The idea of clean code is to write code that is easy to read, understand, and maintain. This involves
using clear and descriptive variable and function names, following good coding conventions, and
breaking code up into small, modular functions. Example:

def find_missing_number(numbers):

"""Find the missing number in a list of consecutive numbers."""

https://dev.to/richardwynn/yagni-principle-in-100-seconds-1i6j
https://solidstudio.io/blog/deep-dive-into-kiss-and-yagni

n = len(numbers)
expected sum = (n+ 1)*(n+2)//2
actual_sum = sum(numbers)

return expected_sum - actual_sum

This code defines a function that finds the missing number in a list of consecutive numbers. The
function is well-organized, has a clear and descriptive function name and documentation, and uses
clear and concise variable names. This adheres to the Clean Code principle of writing code that is
easy to read, understand, and maintain.

Example of code that does not follow Clean Code:

def fmnm(nmbrs):
n = len(nmbrs)
es=(n+1)*¥(n+2)//2
ac = sum(nmbrs)

return es - ac

This code defines the same function as the previous example, but with poorly named variables and
an unclear function name. It's harder to understand what the code does and what the variables
represent.

References:

e Clean Code in Python by Mariano Anaya

Test-Driven Development

Test-Driven Development (TDD) is considered a best practice in software development for several
reasons:

1. Improved Code Quality: TDD promotes writing high-quality code by focusing on small
units of functionality at a time. Developers write tests before writing the code, which helps
clarify the expected behavior and ensure that the code meets those requirements. By
continually running tests during development, developers can catch bugs early, leading to
cleaner and more robust code.

2. Faster Debugging and Bug Fixing: With TDD, bugs are often caught early in the
development process since tests are executed frequently. When a test fails, it indicates
the presence of a bug. Developers can then pinpoint the issue quickly and fix it before
moving forward. This iterative approach saves time in the long run by reducing the
debugging phase.

3. Facilitates Refactoring: Refactoring is the process of improving code without changing
its behavior. TDD provides a safety net for refactoring by ensuring that tests act as a

https://www.perlego.com/book/2094754/clean-code-in-python-develop-maintainable-and-efficient-code-2nd-edition-pdf

safety harness. Developers can confidently make changes to the code-base, knowing that
if they accidentally introduce a bug, the tests will catch it. This ability to refactor code
without fear encourages cleaner and more maintainable code-bases.

. Regression Detection: TDD's incremental and iterative nature ensures that changes to
the code-base are made in small, manageable steps. After each step, developers run the
tests to verify that the existing functionality is still intact. If a test fails, it immediately
highlights a regression, indicating that the refactoring has unintentionally broken existing
behavior. This immediate feedback helps pinpoint the cause of the regression, allowing
developers to quickly identify and rectify the issue.

. Documentation and Examples: Test cases serve as a form of documentation for the
code-base. They provide concrete examples of how the code should behave and can act
as living documentation for other developers. Newcomers to the code-base can
understand the intended functionality by reading the tests, facilitating faster on-boarding
and reducing reliance on outdated or missing documentation.

. Confidence and Peace of Mind: TDD gives developers confidence in their code-base.
Passing tests indicate that the code behaves as expected, reducing uncertainty and
providing peace of mind. Developers can make changes to the code-base with confidence,
knowing that if they accidentally break something, the tests will quickly alert them.

While TDD has many advantages, it may not be suitable for every situation or team. It
requires discipline and initial investment in writing tests, which can slow down the
development process in the short term.

Example of TDD

Let's say we want to create a simple function that adds two numbers together. Using TDD, we
would follow these steps:

1. Write a test case that defines the behavior of the function:

import unittest

class TestAddition(unittest.TestCase):
def test_add_numbers(self):
result = add_numbers(2, 3)

self.assertEqual(result, 5)

. Run the test case and observe that it fails since the add_numbers function does not exist
yet.
. Implement the add_numbers function to pass the test:

def add_numbers(a, b):

returna + b

. Run the test case again and verify that it passes.

ensure that your code is testable and you are only writing code that isnecessary pass the
test.

References:

e https://www.linkedin.com/pulse/what-advantages-test-driven-development-fortegroup

e https://www.codica.com/blog/test-driven-development-benefits/

e https://www.geeksforgeeks.org/advantages-and-disadvantages-of-test-driven-

development-tdd/

Documentation

Documentation serves as a valuable resource for current developers, and future maintainers, and
maintaining the software. Here are a minimum requirements for Documentation:

e APl Documentation: This type of documentation focuses on explaining the usage,
inputs, outputs, and behavior of application programming interfaces (APIs). It helps
developers integrate and interact with the code-base effectively.

e Installation and Configuration Guides: These guides explain the installation process,
system requirements, and configuration options for deploying and setting up the software
environment.

o Release Notes: Release notes provide information about new features, bug fixes, known
issues, and compatibility changes in each software release. They help users and
stakeholders understand the changes and potential impacts of an upgrade.

e User Manuals: User manuals or guides are created to assist end-users in understanding
how to use the software. They typically provide step-by-step instructions, explanations of
features, and troubleshooting tips.

Important points about documentation:

o Keep it Up to Date: Regularly review and update documentation to ensure its accuracy
and relevance. Outdated or incorrect documentation can be misleading and
counterproductive.

e Balance Detail and Conciseness: Document important details without overwhelming
the reader. Use clear and concise language, provide examples, and consider different
audiences' needs.

e Use Consistent Formatting: Establish a consistent formatting style throughout the
documentation to enhance readability. Use headings, bullet points, and formatting
conventions to structure the content effectively.

e Include Examples and Visuals: Examples, diagrams, and screenshots can significantly
enhance understanding, especially for complex concepts or workflows. Visual aids help
illustrate relationships, dependencies, and system flows.

https://www.linkedin.com/pulse/what-advantages-test-driven-development-fortegroup
https://www.codica.com/blog/test-driven-development-benefits/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-test-driven-development-tdd/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-test-driven-development-tdd/

o Make it Searchable: Use proper organization and indexing techniques to make
documentation easily searchable. This enables users to quickly find the information they
need.

e Collect Feedback: Encourage users and developers to provide feedback on the
documentation. Feedback can help identify areas for improvement, clarify ambiguities,
and address common pain points.

References:

e https://blog.jetbrains.com/writerside/2022/01/the-holy-grail-of-always-up-to-date-

documentation/

e https://medium.com/@lanceharvieruntime/code-documentation-waste-of-time-or-vital-for-

success-in-c-and-c-development-c1618c0c2f7a

Tests

It's essential to include testing in your development process to catch bugs early and ensure that
your application meets the required quality standards. There are several types tests that you
should consider writing to ensure the quality and reliability of your code.

Unit tests

These tests are written to test the smallest units of code in isolation, such as individual functions or
methods. They are usually automated and should be written for every new piece of code you add
to your application.

Example: test category data frame.py

Integration tests

These tests check how different parts of the application work together. They test how components
interact and ensure that the application functions as expected when all the pieces are put together.

Example: tests form approval.py

Functional tests

These tests focus on testing the application's features and functionalities. They ensure that the
user's requirements are met and that the application works as intended.

Example: geo.test.js

https://blog.jetbrains.com/writerside/2022/01/the-holy-grail-of-always-up-to-date-documentation/
https://blog.jetbrains.com/writerside/2022/01/the-holy-grail-of-always-up-to-date-documentation/
https://medium.com/@lanceharvieruntime/code-documentation-waste-of-time-or-vital-for-success-in-c-and-c-development-c1618c0c2f7a
https://medium.com/@lanceharvieruntime/code-documentation-waste-of-time-or-vital-for-success-in-c-and-c-development-c1618c0c2f7a
https://github.com/akvo/Akvo-ResponseGrouper/blob/main/tests/test_category_data_frame.py
https://github.com/akvo/national-wash-mis/blob/main/backend/api/v1/v1_forms/tests/tests_form_approval.py
https://github.com/akvo/national-wash-mis/blob/main/frontend/src/lib/__test__/geo.test.js

Performance tests

These tests are designed to check the application's ability to handle a large number of users and
data without slowing down or crashing.

Example: test 10 stress and timeout.py

Security tests

These tests ensure that the application is secure and that sensitive data is protected from
unauthorized access.

Example: test 01 auth.py

End-to-end tests

In an end-to-end test, the system is tested as a whole, without any isolation of its components. This
means that the tests encompass the entire stack of the software system, including the user
interface, application logic, and database. The objective of these tests is to verify that the software
system is functioning as expected and that the user's needs are met.

Example: 00 login with verified super admin.side

Code Coverage

Code coverage is a measure of how much of a software application's source code is executed
during the testing process. It is used to determine the effectiveness of software testing and the
quality of the testing suite. Code coverage is expressed as a percentage, representing the
percentage of code that was executed during testing. For example, if a test suite runs through 80%
of the lines of code in a software application, then the code coverage is said to be 80%.

Coveralls

Tech consultancy team uses Coveralls because it provides a simple and efficient way to measure
code coverage in our development process. Coveralls can be integrated with GitHub repositories to
provide code coverage reports for each pull request, allowing developers to quickly and easily
identify code changes that have impacted test coverage. With this integration, we can ensure that
all changes to the code-base are properly tested, and we can catch any regressions before they
make it into the main code-base.

Example code coverage summary by Coveralls:

https://github.com/akvo/wai-sdg-portal/blob/3b63ba7b0a9d66e5c4f27563cc8d4dd1c1ffb39a/backend/tests/test_10_stress_and_timeout.py#L14
https://github.com/akvo/wai-sdg-portal/blob/3b63ba7b0a9d66e5c4f27563cc8d4dd1c1ffb39a/backend/tests/test_01_auth.py
https://github.com/akvo/isco/blob/main/tests/sides/00_login_with_verified_super_admin.side
https://coveralls.io/

SOURCE FILES ON MAIN

TREE LIST l"maan SOURCE CHANGED COVERAGE CHANGED

SEARCH:

204 102 84 -6 18 +6 1.0 Y 10 +1

n 1778 638 554 +10 84 -0 1.0 169 +6 75 -6

n 52 33 29 +1 6 -1 1.0 Pk A |

u 685 320 296 -1 24 +1 1.0 70 -1 PR

n 1244 596 532 +#l 64 -6l 1.0 202 +19 3¢ -1

m .1/v1_users/management/commands/fake_user_seeder.py 57 32 A2 o -1 1.0 B 1 o -1
SHow 10 * | ENTRIES Showing 1 to 6 of & entries 1

Example coveralls notifications on Pull Requests:

2

coveralls
if

vhen pulling on develop into on main.

Minimum Coverage Requirements

Based on the Tech Consultancy KPI, we must established a minimum code coverage
requirement of 80%

This means that at least 80% of the source code in our projects must be executed during testing.
We have set this requirement to ensure that our software is thoroughly tested and that we are
delivering high-quality products to our customers. By striving for a minimum code coverage of
80%, we can identify areas of the code that are not being adequately tested, and we can ensure
that we are catching potential issues before they make it into production. We encourage the TC
team to aim for a code coverage percentage higher than the minimum requirement, as this will
help us to build more reliable and robust software.

Continuous Integration / Continuous
Delivery

https://wiki.cloud.akvo.org/uploads/images/gallery/2023-05/oNiMGCMZyIlcwFlb-coveralls.png
https://wiki.cloud.akvo.org/uploads/images/gallery/2023-05/Rr8Zj7ByT4yhlyT4-coveralls-notification.png
https://wiki.cloud.akvo.org/books/tech-team-operations/page/operating-model#bkmrk-tc-team

By implementing Continuous Integration/Continuous Delivery (CI/CD) with Semaphore or GitHub
Workflows, we continuously build, test, and deploy code changes in a repeatable, automated way.
This means that our development and operations teams can collaborate more effectively and
identify issues early on in the development process, leading to faster resolution and a more stable
application.

Semaphore ClI

Semaphore (Semaphore Cl) is the most frequently used for Tech Consultancy Projects. Particularly
dealing with Kubernetes deployment, Semaphore provides more customization options for
workflow execution environments and integrates with Kubernetes for seamless deployment.

Semaphore also provides more advanced customization options for workflow execution
environments, such as custom Docker images and caching, which can help speed up your builds
and deployments.

Example config:

version: v1.0
name: RTMIS
agent:
machine:
type: el-standard-2
0s_image: ubuntul804
global_job_config:
secrets:
- name: GCP
- name: docker-hub-credentials
- name: coveralls
- name: rtmis
prologue:
commands:
- echo "${DOCKER_PASSWORD}" | docker login --username
"${DOCKER_USERNAME}" --password-stdin
- export CI_COMMIT="${SEMAPHORE_GIT SHA:0:7}"
- export CI_BRANCH="${SEMAPHORE_GIT_BRANCH}"
- export CI_TAG="${SEMAPHORE_GIT_TAG_NAME}"
- export C|_PULL REQUEST="${SEMAPHORE_GIT REF_TYPE/pull-request/true}"
- export CI_COMMIT_RANGE="${SEMAPHORE_GIT_COMMIT_RANGE}"
- export CLOUDSDK_CORE_DISABLE_PROMPTS=1
- export COMPOSE_INTERACTIVE_NO CLI=1

- export COVERALLS REPO_TOKEN="${COVERALLS_RTMIS _TOKEN}"
- export SERVICE_ACCOUNT=/home/semaphore/credentials
blocks:
- name: 'Build, Test & Push'
skip:
when: "tag =~ "'*'""
task:
prologue:
commands:
- checkout
- cache restore "npm-$(checksum frontend/package.json)"
- cache restore "node-modules-$(checksum frontend/package.json)"
- cache restore "pip-$(checksum backend/requirements.txt)"
- cache restore "images-${SEMAPHORE_PROJECT ID}"
- cache restore "$SEMAPHORE_PROJECT _ID-$SEMAPHORE_GIT_BRANCH"
epilogue:
commands:
- cache store "npm-$(checksum frontend/package.json)" "$HOME/.npm"
- cache store "node-modules-$(checksum frontend/package.json)"
"frontend/node_modules"
- cache store "pip-$(checksum backend/requirements.txt)"
"backend/.pip"
- cache store "images-${SEMAPHORE_PROJECT _ID}" “ci/images"
- cache store "$SEMAPHORE_PROJECT_ID-$SEMAPHORE_GIT_BRANCH"
"$HOME/.cache"
jobs:
- name: Build & Test
commands:
- ./ci/build.sh
- ./ci/deploy.sh

- name: "Promote to production"

run:
when: "tag =~ "'*"
task:
jobs:
- name: Promote to production
commands:

- checkout

- ./ci/deploy.sh

Source: https://github.com/akvo/rtmis

GitHub Workflows

In some other cases, when we only need to run tests or code quality checks (e.g. develop a
package library), Semaphore may not be needed. That's why we take advantage of the GitHub
Workflow, because it's simple, integrated, and easy to use.

Example config:

name: Build & Test
on:
push:
branches:
- main
- feature*
pull_request:
branches:
- main
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python: [3.8, 3.9]
steps:
- uses: actions/checkout@v?2
- name: Setup Python
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python }}
- name: Install Tox and any other packages
run: pip install tox
- name: Run Tox
Run tox using the version of Python in "PATH"
run: tox -e py
test:
runs-on: ubuntu-latest
steps:
- name: Checkout

uses: actions/checkout@v?2

https://github.com/akvo/rtmis/blob/main/.semaphore/semaphore.yml

- name: Run Container
env:
COVERALLS REPO_TOKEN: ${{ secrets.COVERALLS REPO _TOKEN}}

run: docker compose -f "docker-compose.ci.yml" up --exit-code-from backend

Source: https://github.com/akvo/Akvo-ResponseGrouper

Slack Notifications

When a build fails in your CI/CD pipeline, it's important for developers to take prompt action to
resolve the issue. Here are some steps that developers can take when a build fails:

1. Review the build logs: The first step is to review the build logs to
identify the cause of the failure. The logs should provide detailed
information about what went wrong, such as error messages or stack
traces.

2. Reproduce the issue: Once the cause of the failure has been identified,
the next step is to reproduce the issue locally.

3. Fix the issue: Once the issue has been reproduced, developers should
work to fix the problem.

4. Test the fix: After making the necessary changes, developers should
test the fix locally to ensure that it resolves the issue.

5. Communicate with the team: Finally, it's important for developers to
communicate with their team about the issue and the steps taken to
resolve it.

Example GitHub Workflows Notification on Slack:

https://github.com/akvo/Akvo-ResponseGrouper/tree/main/.github/workflows

Poge? GitHub APP 3 minutes
L!J Workflow was l:rlggerﬂd via push by

Status
Failure

Duration
1m 31s

() akvo/Akvo-ResponseGrouper | Today at 06

Re-run all jobs Re-run failed jobs

2 replies
P GitHub APP 9 minutes ago
ks Jobs(3)
B test

Suc :I_'_'-_'ll_['l after 1

build (3.8)

Failed after 455

build (3.9)

Also sent to the channe
Poget GitHub APP 5 minutes
L!J Workflow failed

Example Semaphore Notification on Slack:

1t proj-wcaro-mis-dev-notifications ~
+ Add a bookmarlk

semaphore ape 14:52 Yesterday ~
"‘ national-wash-mis

dedenbangkit's passed — Merge pull request #52
from akvo/feature/50-missing on develop

M GitHub arr
L!J replied to

Pull request merged by

) akvo/national-wash-mis Apr 28th

Typically you will get notification of the CI status in different channels on Slack (e.g #proj-

wcaro-mis-dev-notifications)

https://akvo.slack.com/archives/C04UQ8VCMMH
https://akvo.slack.com/archives/C04UQ8VCMMH

Release / Deployment

Draft for @Anjar

Summary

Developer Sprint should only started after we have a design document that outlines the system
architecture, data models, algorithms, and other technical details. During the developer sprint, the
development team works on developing new features or fixing bugs that have been identified.
Sprints are typically short, time-boxed periods of development that focus on a specific set of tasks

that already estimated in Asana tasks.

U Project Maintainer | Developer M DevOps

_ _____ Frp']dunti‘] : 1

Server Setup UAT (Staging)

SPRINT

boocooooooooooomonomoccoooos

At the end of each sprint, the team should mark the Asana tasks as completed with it's
Actual time.

Example of a competed task in Asana:

JMP Category JSON
9 Iwan Firmawan

(£9) Apr13-14

® WCAROD A1 Dev tasks

#32 Feature/31 jmp category json

Merged @ +13445 -198...

Created in GitHub Apr 12 at 5:08pm

FAQ

| did git commit and found that my local branch is not updated, how to
justify it?

If you merge your local branch into the origin branch, there will be only a single commit reported
on the origin branch you've merged even if your local branch has multiple commits, regardless of

whether you use a plain git pull or with --squash merge. You should always do git pull --rebase instead
of git merge .

I've run the test locally and everything is fine, but why did the build
fails?

https://wiki.cloud.akvo.org/uploads/images/gallery/2023-05/iHV5tdPwVil13LUu-complete-asana.png

Become friends with your broken builds. So, your build fails... what exactly does that mean? You

can always check the pipeline build from
https://akvo.semaphoreci.com/projects/<repo_name>. Checking the job output should point
you to a failing test. There are several reasons:

e Build or Deploy code has an error, DevOps to blame.

o Network test (eg. basic.sh) is error. Meaning that there are missing URLs or the

network/proxy is misconfigured.
e Code Quality (Flake, ES-Lint, or Prettier) warning

Revision #28
Created 2 May 2023 09:35:59 by Deden Bangkit
Updated 31 October 2024 16:28:56 by Guillaume Deflaux

https://github.com/akvo/rtmis/blob/ba35dc4d0a9a633ac82c7a1c93325d8c8efe9e2f/ci/test/basic.sh#L24-L25

