
Operating Model
Documentation Guidelines
Password Management Guidelines [TBC]
Asana

Asana For Internal Team Coordination
Asana For Project Execution [TBC]
Objective & Key Results

Leave Request Process
Developer Guidelines

Tech Team
Operations

The Technical Solutions team is unique in the sense that it federates a very wide range of skills and
expertise (inherent complexity of building software). Due to our team’s size, some domains of
expertise are led by a single person, resulting in one-person teams. We see this as a temporary
situation but find it necessary to formalize these teams as the services they provide are essential
to our collective success.

The Technical Solutions team is composed of 2 types of teams:

Mission Teams - They execute the core operational goals of Akvo, i.e. build software for
impact.
Support Teams - They provide centralized domain expertise that is required for the
Mission teams to achieve their goals.
Hybrid Teams - They execute the mission and provides support capacity to the
organization

Each team is described in a table with the following attributes:

Mandate - A summary of what the team does at/for Akvo

Operating Model
Team Structure

Offers - The services that the team offers
Needs - The information, tools and services needed for that team to deliver its function
KPIs - The KPIs that will be used to measure the performance and success of the team. In
some instances, we’ve also described a number of metrics that reflect the volume of work.
Lead - The person accountable for the team
Coordination - The frequency with which the coordination meeting is held.
Task Tracking - The place where work is tracked and coordinated (Asana).

Tech Consultancy Team

Mandate Support the BD team in developing and closing
deals
Deliver high quality and on budget custom
software solutions

Offers BD
Explore partnership collaboration
ToR evaluation (Go, No Go)
Technical proposal writing (Budgets, Timelines)
Tech PoC for concepts provided by sector leads

Delivery
Custom software solutions
Software handover activities
Maintenance and support

Mission Teams
TC Team

Tech Consultancy Team

Needs Information
BD - ToR, context
Delivery - ToR, context, user requirements

Tools
Capacity Planner
PMT
Task Manager
Code hosting: Github
CI/CD Pipeline: Semaphore, CircleCI
Unit testing: coveralls

Services
Hosting
Design
Testing
User support

Tech Consultancy Team

KPIs Execution Efficiency
Definition: Ability to execute the scope within
the allocated budget
Source: PMT
Target: 100%

Team Utilization
Definition: Ratio between allocated work days
and available days to work
Source: Capacity Planner
Target: 90%

Team Billability
Definition: Ratio between allocated work days
on client projects and available days to work
Source: Capacity Planner
Target: 75%

Unit Test Coverage
Definition: % of the code covered by unit tests
Source: Coveralls
Target: 80%

Integration Test Coverage
Definition:
Source: Integration testing software
Target:

User reported bugs
Definition: number of bugs reported by users
after the software went into productions (by
severity)
Source: Freshdesk
Target: less than 5% critical bugs

Lead Joy Ghosh

Coordination Project issue board on GH
3 times a week tasks status / adhoc as required
Bi-weekly team status check

Task Tracking Each project has its own Asana Team or Project

https://coveralls.io/
https://docs.google.com/document/d/1YzfddH6VSAy2z7B5K-Xer02d3VZ9m2PDwwTlvA1iVMM/edit#heading=h.cy7blqjbt7qi
mailto:joy@akvo.org

Product Teams

Mandate Build, maintain and provide user support of
current Akvo products (FLOW, RSR).
Develop new products based on market needs.

Offers Product development
Product management

Needs Information
Market data
User feedback

Tools
Capacity Planner
PMT
Task Manager
Code hosting: Github
CI/CD Pipeline: Semaphore, CircleCI
Unit testing: coveralls

Services
Hosting
Design
Testing
User support

Product Teams

Product Teams

KPIs Bug Reports
Definition: number of bugs reported by clients
Source: Freshdesk
Target: less than 5% critical bugs

User Engagement
Definition: This metric measures how often
users are using the product and how engaged
they are with it.
Source: TDB
Target: TBD

Revenue
Definition: This metric tracks the amount of
money generated by the product
Source: Contracts
Target:

Customer Satisfaction
Definition: This metric measures how satisfied
users are with the product.
Source: Satisfaction questionnaires
Target: 4/5 in average

Lead Guillaume Deflaux

Coordination Every 2 weeks - Guillaume Deflaux Zuhdil Kurnia

Task Tracking RSR Project in Asana
FLOW Project in Asana

Support Teams
DevOps Team

https://docs.google.com/document/d/1YzfddH6VSAy2z7B5K-Xer02d3VZ9m2PDwwTlvA1iVMM/edit#heading=h.cy7blqjbt7qi
mailto:guillaume@akvo.org
mailto:guillaume@akvo.org
mailto:zuhdil@akvo.org
https://app.asana.com/0/1203984935859136/board
https://app.asana.com/0/1204279546124153/board

DevOps Team

Mandate Secure internal and external systems
Provide best-in-class infrastructure for the
services Akvo offers

Offers Security for internal and external systems (Company-wide)
Implement security best practices for our
internal tools (email, password management,
etc…) and server deployments.

Infrastructure (TC Platforms / Products)
Design
Deployment
Support & Monitoring
Costing

Knowledge Management & Company Culture
Updated technical documentation (wiki)
covering the above topics (SOPs, best
practices, …)
Provide DevOps & Security trainings internally
Promote a DevOps & Security culture
Domain technical watch (best practices, tools,
…)

DevOps Team

Needs Information
Product/project software architecture plan
(before development started)
Product/project software architecture
documentation
Product/project system requirements and
quickstart documentation
Infrastructure budget allocation plan from
product, project or BD team

Tools
Hosting provider (Google Cloud, Contabo,
Siteground)
Code Version Control (Github)
CI/CD Tools (SemaphoreCI, CircleCI, Github
Action)
Documentation tools
Infrastructure orchestration and configuration
management tools (Terraform, Ansible)
Secret management tools (Hashicorp Vault,
Vaultwarden)
Maling tools (Mailjet)
Workflow automation (N8N)

Services
Testing

DevOps Team

KPIs Average Service Availability
Definition: The client facing service are
available
Target: 99.9% over a quarter
Source: Uptime checks

Change Success Rate
Definition: Changes made by the DevOps team
do not result in any downtime or other issues.
Target: 90% over a quarter
Source: uptime checks, CI/CD
Note: downtime caused by deployments are
not taken into account

Cost
Definition: Amount that we spend on cloud
services (mostly GCP)
Target: Yearly targets based usage of services (
COGS, cost per project…). Still TBD

Team Satisfaction
Definition: The DevOps team should aim for a
high level of satisfaction among internal teams
who rely on DevOps support.
Target: Score at least 8 out of 10 on average
Source: Quarterly survey

Lead Anjar Fiandriato

Coordination Every 2 weeks - Guillaume Deflaux Anjar Fiandriato

Task Tracking DevOps Project in Asana

Design Team

Mandate Support TC and product teams in delivering
designed-for-purpose applications

Design Team

https://www.investopedia.com/terms/c/cogs.asp
mailto:anjar@akvo.org
mailto:guillaume@akvo.org
mailto:anjar@akvo.org
https://app.asana.com/0/1204279546124164/board

Design Team

Offers Requirements Gathering
Conduct user research
Collaborate with product managers,
developers, and subject matter experts to
define and prioritise user stories and product
requirements

Wireframing & UI Design
Create wireframes, prototypes, and high-
fidelity mockups that effectively communicate
design concepts and interactions
Create and maintain design style guides and
design systems that support consistent and
efficient design
Provide corresponding HTML/CSS templates

User Feedback
Continuously iterate on designs based on user
feedback, stakeholder input, and usability
testing

Knowledge Management & Company Culture
Updated technical documentation (wiki)
covering the above topics (best practices, tools,
…)
Domain technical watch (best practices, tools,
design trends, …)

Needs User Research Tools
Design and Prototyping Tools
Collaboration Tools
Design Systems and Style Guides
Feedback and Iteration Tools
Training and Professional Development

Design Team

KPIs Process Indicators
Projects use Design Process Checklist

Target: 80%
Source: Design Process Checklists

Output Indicators
% Completion of Design Process Checklist

Target: 100%
Source: Design Process Checklists

% Successful Task Completion (prototypes)
Target: 80%
Source: Maze

User Perceived Experience (prototypes)
Target: 4/5
Source: Maze

Lead Ouma Odhiambo

Coordination Every 2 weeks - Guillaume Deflaux Ouma Odhiambo

Task Tracking Design Project in Asana

User Support & Quality Team

Mandate Be the first point of contact of our end-users
and help them make the most of our platforms
and products.
Support the TC and products teams in
delivering well tested software applications.

User Support & Quality Team

mailto:ouma@akvo.org
mailto:guillaume@akvo.org
mailto:ouma@akvo.org
https://app.asana.com/0/1204279546124171/board

User Support & Quality Team

Offers All the services are provided to Products and TC Platforms
alike.

L1 Support
First point of contact with users
Triage issues and escalate if necessary
Resolve issues that are related to the usage of
the software (anything that is not a bug or a
server issue)

User Trainings
Create training curriculums
Deliver trainings to end-users (remote/onsite)

Functional Testing
Write test plans
Execute test plans (automated or not)
Document issues and create test reports

User Documentation
Create and update user documentation inline
with software release cycles.

Knowledge Management & Company Culture
Updated technical documentation (wiki)
covering the above topics (best practices, tools,
…)
Domain technical watch (best practices, tools,
…)

User Support & Quality Team

Needs Information
Platform/Product onboarding from the
development teams
Functional requirements documents
User stories and personas
Release schedules
Test data
Test environment

Tools
Helpdesk (Freshdesk)
Documentation/Wiki (Freshdesk, Bookstack)
Automated Testing (Selenium, Appium)
Test Management (TestRail, TestLodge,
Zephyr, Zebrunner)
Bug Tracking(Github, Asana)
Load Testing (Gatling, Locust, LoadRunner)
User Feedback (Piwik, HotJar, ProductBoard)

User Support & Quality Team

KPIs L1 Support
KPI

Definition: Number and % of tickets that
breached the SLAs
Source: Freshdesk
Target: 0(%)
Definition: Level of satisfaction of users
after the handling of their tickets
Source: Freshdesk
Target: 4/5 or higher

SLA breaches
Average User satisfaction Level

Work Volume
Number of tickets received
(Freshdesk)
Number / % of escalated tickets
(L2+) (Freshdesk)
Average first response time
(Freshdesk)
Average resolution time (Freshdesk)

User Trainings
KPI

Definition: Declared level of satisfaction
of trainees after a training on one of our
platforms or products
Source: Post training questionnaire
Target: 4/5 or higher

Average trainee satisfaction Level

Work Volume
Number of trainings delivered
Number of created training
curriculums
Number of updated training
curriculums

Functional Testing
KPI

TBD

Work Volume
Number of test plans written
Number of test plans executed
Number of test reports written

User Documentation
KPI

Definition: The % of documentation sites
that have content that cover 100% of
the user facing features of platforms and
products
Source: Documentation sites + platform
/ product release notes
Target: 100%
Definition: Level of helpfulness of
documentation pages
Source: MkDocs
Target: 4/5 or higher

% of up-to-date documentation sites
User Satisfaction Level

Work Volume
Number of updated articles
(MkDocs)
Number of visits to the help sites
(Piwik)

Knowledge Management & Company Culture
KPI

Definition: % of TC Platforms/Products
using the documentation site and testing
tools.
Source: Documentation sites + testing
tools
Target: 100%

Adoption

Work Volume
Number of significant updates to
the wiki (Wiki)

User Support & Quality Team

Lead Jonah Kisioh

Coordination Every 2 weeks - Guillaume Deflaux Jonah Kisioh

Task Tracking Support & Quality Project in Asana

Technical Solutions Management

Mandate Align objectives of the Tech Solutions Team
with the objectives of the rest of the company
Improve the efficiency of the entire Tech
Solutions Team

Offers Strategic and technical orientations to sub teams,
including tie-breaking based on suggestions. Internal
initiatives to focus on:

Resourcing
Team / HR
Tech Stack
Methodology
Tooling
Quality Standards
OKRs

Needs Information
Company strategy and objectives
Feedback from sub teams

KPIs Objective alignment
Definition: The fact that the Technical Solutions
sub team objectives are aligned with larger
company objectives.

Team Efficiency
Definition: The fact that the Technical Solutions
sub team objectives create efficiencies that
affect the entire team.

Lead Guillaume Deflaux

Hybrid Teams
Technical Solutions Management

mailto:jonah@akvo.org
mailto:guillaume@akvo.org
mailto:jonah@akvo.org
https://app.asana.com/0/1204279546124178/board
mailto:guillaume@akvo.org

Technical Solutions Management

Coordination Monthly - Guillaume Deflaux Joy Ghosh Deden Bangkit

Task Tracking Internal Project in Asana

Team coordination plays a big part in creating the right environment for our team to deliver great
work and to create a positive dynamic. The team coordination approach described below aims to
foster team building while boosting our collective efficiency, i.e. provide enough context for
everyone to properly execute their work while doing so in a friendly, respectful and engaging
manner.

This approach is purposely built for our current team. We should expect it to change should our
team size and structure evolve.

In most instances these meetings are used both for people management and team coordination
purposes.

Frequency Every week

Duration 30 min

Purpose Ensure that there is a space to discuss your life
at Akvo.
Coordinate the definition and the execution of
team roadmaps
Ensure coherence of team specific initiatives
within the larger Tech Solutions Team

Structure Manager-Direct 1-to-1
Workplate & Projects
Growth
Performance

Team Specific Discussion
Services
Initiatives
Roadmap
Performance

Coordination Mechanisms

1-to-1s Guillaume / Team Leads

mailto:guillaume@akvo.org
mailto:joy@akvo.org
mailto:deden@akvo.org
https://app.asana.com/0/1204279547424392/board

Frequency Every 2 weeks

Duration 1h

Purpose Make sure that we can have a bit of “face time”
all together in order to break the silos created
by our day-to-day
Create a space for direct communications with
the entire team (email remains the official
channel for team wide announcements)
Create an experience sharing space to foster
ideation and innovation within the Tech Team

Structure Think Tank Thursdays (30 min)
A rotating presentation by someone from the
team.
Any topic that is (vaguely) related to our work
Any format allowed as long as there’s at least
10 min for questions. The more interactive the
better.

All Hands (30 min)
Team wide announcements
Project / Product updates
Team Specific Updates
Updates from MC

Tech Solutions All Hands

Reason Description

Knowledge Management Documentation serves as a way to capture and preserve
important information and knowledge within an
organization. It helps ensure that critical information is not
lost due to employee turnover or changes in leadership.

Training & Onboarding Documentation can be used as a tool to train and onboard
new employees. It provides a clear and concise source of
information that helps new employees understand the
company's policies, procedures, and processes.

Communication Documentation can serve as a communication tool,
ensuring that all team members are on the same page and
understand what is expected of them. It can also help
facilitate collaboration and knowledge sharing between
team members.

Continuous Improvement Documentation can help identify areas for improvement
within a company's processes, policies, and procedures. It
provides a record of past practices and helps identify
opportunities for optimization and innovation.

Risk Management Documentation helps manage risks associated with the
company's operations. It provides evidence of past
decisions and actions, which can be used to evaluate the
effectiveness of risk management strategies.

Documentation Guidelines
Our wiki is based on the Open Source application called BookStack. Check the ��
fundamentals and �� official documentation.

Why Do We Need Documentation?

https://www.bookstackapp.com/
https://wiki.cloud.akvo.org/books/productivity-tools/page/bookstack-fundamentals
https://www.bookstackapp.com/docs/

By applying these principles, you will create useful and enjoyable documentation. Please, keep
these in mind at all times while you are writing a page.

Principles Description

Clear and Concise The documentation should be written in a clear and
concise manner, using simple language that is easy to
understand. The use of jargon and technical terms should
be kept to a minimum and explained when necessary.

Well-Organized The documentation should be well-organized and
presented in a logical sequence. It should have headings,
subheadings, and an index to help the reader quickly find
the information they need.

Accurate The documentation should be accurate and up-to-date,
reflecting the current state of things

Comprehensive The documentation should cover all the important aspects
of the system or product being documented, including
features, functionalities, and limitations.

User-Centric The documentation should be written with the end-user in
mind, providing information that is relevant to their needs
and expectations.

Visual Aids The documentation should include relevant images,
diagrams, and videos to help explain complex concepts
and processes.

Consistency The documentation should maintain consistency in its style
and formatting, using the same terminology and language
throughout.

Easy to Update The documentation should be easy to update, so that it
can be kept current things evolve.

What Makes A Good
Documentation?

Always use BookStack's Headings to structure the content of your pages. This automatically
generates the table of content of your pages in the left pane.

Content Organization

The content of our wiki is organized following the PARA Method. It is based on 4 simple categories
of content:

Category Description

Projects / Products Definition: Time-bound efforts that we are working on
now.

Akvo: This is where we centralize the documentation
about our current active projects and products.

Areas Definition: Long term knowledge areas that we want
proactively manage.

Akvo: This is where we document our internal processes,
SOP and knowledge about our areas of expertise.

Resources Definition: Topics or interests that might useful in the
future.

Akvo: This is where we compile useful links and
documents, reading lists, list of conferences, etc...

Archive Definition: Inactive items from the other 3 categories.

BookStack offers 4 levels of content nesting:

Shelves - Used for content categories (PARA).
Books - Used for top level content grouping.

Chapters - Used to organize low level content elements.
Pages - Used to organize low level content elements. Note that pages
can also be directly below a book.

Each project has a dedicated book, with the following structure:

Project Sheet (page) - A table providing essential information about the project. Use the
Project Sheet template.

The PARA Method

Content Nesting

Default Organization
Projects / Products

https://fortelabs.com/blog/para/

Technical documentation (chapter)??

Each product has a dedicated book with the following elements:

Product Sheet (page)
Technical documentation (chapter)??

Each support team has a dedicated book.

To archive content you simply need to move it to the Archive shelf. Make sure to add the [archive]
prefix to the title of every archived content (book, chapter, page).

Areas

Archiving Content

Password Management
Guidelines [TBC]

How we use Asana at Akvo to get things done.

Asana

Asana

In addition to using Asana for coordinating and managing the execution of client work, we also use
it to coordinate the internal work specific to the Tech Team. We use a number of Asana Projects
grouped in Asana Teams.

All Asana Teams used to group the Asana Projects are use the following naming convention: Team -
Tech - <project group name> .

�� Asana Team Privacy Setting: Public to organization

�� Asana Project Privacy Setting: Shared with Team - Tech - General

This is the Asana Team that contains the main internal projects for the Tech Team.

Project Description

Leave Requests The project for leave request validation.

Asana For Internal Team
Coordination

New to Asana at Akvo? Check out the Asana - Foundamentals wiki.

Naming Convention

Project Organization
Team - Tech - General

https://wiki.cloud.akvo.org/books/productivity-tools/page/asana-fundamentals

Project Description

Professional Development The list of courses that everyone is taking as part of the
professional development goals. This is public so that
everyone can see what others are learning and eventually
create small cohorts.

DevOps Roadmap The DevOps roadmap, backlog section is where we keep
any big ideas for upcoming quarters.

DevOps - Daily Task Ad hoc tasks that ensure our internal hosting capabilities
are top notch. Any task related to our operation and
supporting team will be logged here.

Support & Quality Tasks related to the development of support & quality
skills and services.

Design Tasks related to the development of design skills and
services.

Internal Tasks related to short-term internal projects.

Asana

Estimated + Actual Hours => To create a feedback loop

1 Asana Team per client project

Each Asana Team should at least have 2 Asana Projects:

Timeline
Sprint

For small client projects

Describe the structure of the sprint board. Create a template for this in Asana.

For big client projects

Describe the structure of the sprint board. Create a template for this in Asana
Add a Backlog Asana Project. Describe the structure (sections) and to use it. Create a
template for this in Asana
Add a Feedback porject with a form. Describe the structure (sections) and to use it. Create
a template for this in Asana.

Boom!

Asana For Project Execution
[TBC]

New to Asana at Akvo? Check out the Asana - Foundamentals wiki.

https://wiki.cloud.akvo.org/books/productivity-tools/page/asana-fundamentals

Asana

Objectives & Key Results (OKR, alternatively OKRs) is a goal-setting framework used by individuals,
teams, and organizations to define measurable goals and track their outcomes. We will use this
framework to increase our focus and intentionality.

We use Goals feature in Asana to manage our team OKRs.

We stick to a 2-level goals hierarchy:

The top level goals represent the Objectives.
The sub-goals represent the Key Results.

Objectives are defined and tracked yearly.

Key Results are defined and tracked quarterly. KRs can be repeated (these KRs are generally
important things that we need to track all year long, but for which the analysis makes sense at a
higher frequency).

OKRs are public to the entire company.

The OKR management process is a collaborative process to which everyone is expected to
contribute.

Objective & Key Results
Introduction

Basic Principles

Management Process
Accountability

https://en.wikipedia.org/wiki/Objectives_and_key_results
https://help.asana.com/hc/en-us/articles/14111312236827-Get-started-with-Asana-Goals

The CTO is ultimately accountable for the performance of the Tech Team and therefore
accountable for the OKR process. Tech Team Management is responsible for its day-to-day
execution.

Objectives and Key Results are owned by a single person. That person is accountable for achieving
the target. The owner can share or delegate the execution with approval of Tech Team
Management. That approval is required to make sure that people have enough capacity to do the
work.

The OKRs are managed following the calendar below.

Activity Description

Set Yearly Objectives Tech Team Management sets the objectives
based on the past year and the already
identified goals and challenges for the
upcoming year.

Set Q# KRs Tech Team Management sets the goals for the
quarter, factoring the inputs from team
members.

Mid Q# Scoring Each goal owner updates the scores that best
reflects their current progress.
The scores are reviewed and discussed at the
following Tech Team Management Meeting.

Final Q# Scoring Each goal owner provides the final scores for
the quarter.
The scores are reviewed and discussed at the
following Tech Team Management Meeting.
A team-wide review takes place at the following
All Hands.

OKR Management Calendar

Activity Description

Yearly OKR Review Teach Team Management compiles the data on
OKRs and shares an analysis with the entire
team.

The member of Tech Team Management directly manage the entire Tech Team. As such they are
expected to socialize and proactively collect feedback on KR: suggestions to achieve current
targets, suggestions for future KRs, etc...

All team members are expected to proactively participate in the OKR process by either providing
direct feedback to members of the Tech Team Management during their 1-to-1 and during the
planned team-wide discussion blocks such as the All Hands. Feedback and suggestions are
welcome at any other time.

It's super simple:

Create a task in the Suggestions section using the Key Results Template.
Assign it to yourself so we know who made the suggestion.
Select the objective. If you are not sure, you can pass.
Fill in the description as explained in the task template.

Fill in the form as follows:

Title: Short and clear statement
Goal Owner: CTO
Accountable Team: Team - Tech - General
Time Period: FY##
Privacy: Public
Members: Team - Tech - General [Can edit] (automatically set once the Accountable
Team is selected)

Collaborative Nature Of The Process

You can suggest KRs at anytime by adding a task in the OKR Suggestions project in Asana.

Managing OKRs With Asana
Create An Objectives

https://app.asana.com/0/1206326095411690/1206326935290714

Parent Goal: None
Update Method: Automatic
Progress Source: Sub-goals
Measurement: Percent

The result should look something like below.

Feel free to set a description for the objective once it is created.

https://wiki.cloud.akvo.org/uploads/images/gallery/2023-12/7jkHDtkdZGaAFU3V-image.png

Fill in the form as follows:

Title: Short and clear statement
Goal Owner: Anyone in theory, Tech Team Management member in most cases
Accountable Team: Team - Tech - General
Time Period: Q# FY##
Privacy: Public
Members: Team - Tech - General [Can edit] (automatically set once the Accountable
Team is selected)
Parent Goal: Select the corresponding parent goal
Update Method: Manuel
Measurement: Choose the appropriate option
Current Value: Input the starting value
Target Value: Input the target value that we intend to achieve by the end of the quarter

The result should look something like below.

Create A Key Result

Once the goal is created, the description must be updated to specify the scoring scale of the KR.

For the scoring scale we use a % scale, even for discrete targets, since in most cases some work is
done even if the goal is not achieved. Each step builds on the previous one.

0% - Nothing done / dropped
30% - Did something, but not enough for change to materialize
50% - Goal partially achieved

Scoring Scale

https://wiki.cloud.akvo.org/uploads/images/gallery/2023-12/T6HwIf66klKARQPG-image.png

70% - Goal achieved (actual target)
100% - Goal surpassed (good to think about what surpassing the goal is)

Scoring KRs is done using the Status Update feature.

If you are performing the Mid Quarter Scoring, click on one of the highlighted statuses.

If you are performing the Final Scoring, click Close this goal .

Scoring a Key Result implies the following 3 steps.

Select the appropriate status. See description below.

Score A Key Result

1. Setting The Status

https://wiki.cloud.akvo.org/uploads/images/gallery/2023-12/ILqrKsqPtGYP6jlV-image.png

Status Description

Open Statuses - Relevant for mid quarter scoring

�� On Track You expect to achieve the target.

�� At Risk You think it's going to be difficult to achieve the target, but
that it's still doable.

�� Off Track You don't think you will be able to achieve the target.

Closed Statuses - Relevant for final scoring

�� Achieved All things considered, you think that the target was
achieved.

�� Partial You did not achieve the target but did reasonable
progress.

�� Missed You did not do substantive progress.

⚪ Dropped You decided to drop the target during the quarter.

https://wiki.cloud.akvo.org/uploads/images/gallery/2023-12/MjwWKcWOfqVWSdi1-image.png

Score the KR according to the on the scoring scale

Fill in at least the Summary section.

2. Updating The Progress (Score)

3. Provide Context

https://wiki.cloud.akvo.org/uploads/images/gallery/2023-12/Cgxl1ehawREmsEUP-image.png
https://wiki.cloud.akvo.org/uploads/images/gallery/2023-12/FRKiKQsFvJFBXiBN-image.png

The person requesting leave.

As soon as this person knows s/he wants to take leave. Depending on the duration of your leave
you are expected to send the request a in advance. This is important to make the team has enough
to get organized.

Duration Notice Period

<= 2 days 1 week before the first day of leave

3 < days <= 5 2 weeks before the first day of leave

1 < week <= 2 weeks 1 month before the first day of leave

> 2 weeks 2 months before the first day of leave

Leave Request Process
Process Overview

All requests are managed in the Leave Requests Asana project.

Who starts the process?

When should the request be sent?

When is a request approved definitively?

https://app.asana.com/0/1204409034175458/board

When it is reflected in the Capacity Planner.

Before submitting a Leave Request, we recommend you first talk to the Project Managers of the
projects you are working in order to:

1. Inform them
2. Confirm that it will be possible from the perspective of projects.

PM validation is not an absolute requirement depending on the reason why you need leave.

Create a task in the Leave Requests Asana project in the Manager to Approve column. All fields are
mandatory.

1. Title: The name of the requester
2. Start Date: First day the request will be on leave
3. End Date: Last day the request will be on leave
4. # Working Days: The number of working days included in the period of leave
5. Assignee: The requester's manager
6. Description (optional): Any additional context related to the request. Remember that

the content of this task is public.

The manager approves the request based on the following criteria:

PMs are aware of the request
PMs have a plan to in place to manage project deliverable during the leave period
The leave request does not create issues with internal projects

The manager decision can be one of the following:

Detailed Process
0. Talk To Your Project Managers (Asana)

1. Leave Request Submission (Asana)

2. Manager Approval (Asana)

https://app.asana.com/0/1204409034175458/board

Decision Action In Asana

Approve the request Move the request to the Capacity Planner To Update
column and assign the task to the Capacity Manager.

Ask for more information Write a comment mentioning the requester and asking for
additional information. Sensitive conversations should
happen in direct Slack messages or during 1:1 meetings.

Deny the request Add “Not approved” in the comment section. The request
should be moved to the Processed column.

The Capacity Manager attempts to update the Capacity Planner accordingly. The following
scenarios are possible:

Scenario Action in Asana

No issues updating the Capacity Planner The Capacity Manager:
Moves the request to the Internal Tools To
Update column
Leaves a comment mentioning the requester
indicating that the request has been taken into
account.
Assigns the task to the requester

⚠️ At this stage only is the request considered as
accepted.

A conflict appears in the Capacity Planner The Capacity Manager leaves a comment mentioning the
Manager. Discussions happen in Asana or on Slack.

As the requester you are expected to update the internal tools to make sure other colleagues are
aware / can find out that you have leave planned.

1. Announce your leave period in #team-tech-leaves .
2. Update the company Holiday calendar
3. Update your personal calendar. Make sure to use an Out Of Office block so that meetings

are rejected automatically. This inform meeting organizers immediately.
4. Log your leave in Clockwise (employees only, not applicable to contractors).

Details for steps 2 and 4 are available here.

3. Capacity Planner Update (Asana)

4. Update Internal Tools

https://support.google.com/calendar/answer/7638168?hl=en&co=GENIE.Platform=Android
https://intranet.akvo.org/holidays/

Akvo is using GitHub as main version control system. By using GitHub, we can ensure that our
code-base is well-managed and that changes are thoroughly reviewed and approved before they
are added to the code-base, ultimately improving the quality and stability of our software. Here are
the most important rules of that have to be consider:

Require pull request reviews before merging: This rule requires that all changes to a
branch be submitted as a pull request, and that at least one other team member approves
the changes before they can be merged into the main branch.
Require status checks to pass before merging: This rule requires that certain
conditions be met before a pull request can be merged. For example, we require that all
tests pass in the CI and certain code quality coverage metrics are met.
Require a minimum number of reviewers (at least one reviewers): This helps to
ensure that changes are thoroughly reviewed before merging.
Restrict who can push to the branch: This rule limits who can make changes to a
branch, helping to prevent accidental or unauthorized changes.

It's important to have a clear and consistent naming convention for your branches. A good naming
convention for Feature Branches is to use the following format: feature/<issue_number>-
<issue_description>. For example, feature/13-backend-test-setup .

Here's what each part of the naming convention means:

feature/ : This is a prefix that identifies the branch as a feature branch.
<issue_number>: This is the number of the issue or task that the branch is related to.
<issue_description>: This is a brief description of the issue or task. It should be short but
descriptive enough to give an idea of what the branch is about.

Using this naming convention makes it easy to identify which branches are related to which issues
or tasks. It also helps to keep our branches organized and easy to manage.

Developer Guidelines
Version Manager

Branch Protection Rules

Branch Naming

Make sure that you have the issue number is available on GitHub

Pre-commit config is a configuration file used by the pre-commit framework to define a set of code
checks, also known as "hooks," that are run before code is committed to a version control system.
The pre-commit framework is a tool that allows developers to define and manage these hooks
locally, providing a way to catch errors early and enforce coding standards.

 Example: [#363] Pre-commit initial config

In our projects, each team is relatively small, and developers often work independently. This makes
PR (Pull Request) reviews critical, as they allow other developers to understand the project better,
which is essential for cross-team knowledge and backup in case of absence. Although Deden (Lead
Developer) is the primary person responsible for reviewing code, it is not mandatory that he
handles every review.

Benefits of Code Reviews

They help ensure code quality, maintainability, and alignment with the project’s goals.
They allow the team to share knowledge about features and code structures, reducing
bottlenecks when someone is unavailable.
They encourage best practices, such as adhering to DRY, KISS, and YAGNI principles.
They provide a learning opportunity for both the code author and the reviewer.

1. Move the Task to the PR Review Section
Move the task related to the feature you're asking to be reviewed into the PR Review
section on the Asana's current Sprint board (e.g. Sprint #2).

2. Provide the PR Link
Ensure that the GitHub PR link is added to the "GitHub" field in the Asana task.

3. Assign a Reviewer
Assign the reviewer for your code in Asana. Talk to the Lead Developer on your project to
confirm who to assign the PR too. Usually one person is appointed for a project, but we
remain flexible based on the workload of said person and the timeliness needed for the
review. Escalate to the Delivery Manager or CTO if you are blocked.

4. Assign the Reviewer in GitHub
Don’t forget to also assign the same reviewer in the GitHub PR.

Pre-Commit Config

It is true that Continuous Integration/Continuous Delivery (CI/CD) pipelines can also catch
errors and enforce coding standards. However, pre-commit hooks have some distinct
benefits that make them complementary to CI/CD pipelines.

Pull Request

As a Requester

https://github.com/akvo/isco/commit/c3cb3a46bf97614fc150a10af91c37e2a38b3e0f
https://wiki.cloud.akvo.org/books/tech-team-operations/page/developer-guidelines#bkmrk-code-quality-standar
https://wiki.cloud.akvo.org/uploads/images/gallery/2023-05/cMWH0fPUnb0KIjFu-asana-pr.png

5. Follow Up on Delayed Reviews
If the assigned reviewer hasn’t been able to review your code after 2 days, report it in the
relevant Slack channel, mentioning the reviewer. You can use #team-tech-general or
the specific project’s channel #proj-<project-name>-tech. Escalate to the Delivery
Manager or CTO if you remain blocked.

6. Ensure CI Passing and Test Coverage
Make sure your code passes all CI checks. Additionally, unit tests are mandatory, or at the
very least, integration tests (e.g., testing API endpoints) should be included if it’s a back-
end feature

1. Check PR Readiness
Confirm that the code is marked as "Ready to Review" in both GitHub and Asana. If the PR
is still in draft or missing the GitHub PR link in Asana, notify the requester to update it.

2. Ensure CI Status
If the PR hasn’t passed the CI checks, reassign the task back to the requester and move
the task to the In Progress section.

3. Understand the Feature’s Context
Carefully read the task description in Asana, paying special attention to the goals and
purpose outlined in the Tech AC (Acceptance Criteria) section or Low-Level Design. Check
if there’s a QA plan—if so, you might want to manually test the feature as well.

4. Run and Inspect the Code (if necessary)
For larger or more complex PRs, run the code locally. Also, review code quality by running
linters or quality checks if required. Evaluate the code’s adherence to best practices like.

As a Reviewer

https://akvo.slack.com/archives/C04NX5N4WHF

5. Log Your Review Time
Track the time you spend reviewing the code. The review ideally should not takes longer
than an hour, log your time in the Asana task itself and Clockwise (or General, with
notes) to accurately reflect the effort.

6. Check the Target Branch
Ensure that the PR is targeting the correct branch (usually main) since the QA team will
test the code manually after it’s deployed to the main branch.

1. Reassign to the Developer
Once the review is done, reassign the task back to the developer. Keep the task in the PR
Review section on Asana.

2. Move to QA if Necessary
If you know who the QA person is, move the task to the QA section in Asana and assign it
to the appropriate person. The QA is typically the Project Manager, who may not be highly
technical. If there’s nothing for them to test, you can simply mark the task as "Done."

3. Limit Feedback Cycles
It is desirable to keep the number of iterations to a minimum as each iteration can add
delays to the development process. The author of the PR should ensure that they have
done thorough testing and review before submitting the PR for review, and try to
incorporate feedback as much as possible in a single iteration.

A consistent code format is important for several reasons:

1. Readability: A consistent code format makes it easier for team members to read and
understand the code, even if they didn't write it themselves.

2. Maintainability: Consistent formatting makes it easier to maintain the code over time.
When code is formatted consistently, it's easier to spot errors and to make changes to the
code without introducing new errors.

3. Collaboration: Consistent formatting makes it easier for team members to collaborate on
code. If everyone is following the same format, it's easier to understand each other's code
and to work together to solve problems.

Some common best practices for JavaScript code formatting include:

When the Review is Completed

As a general rule of thumb, most teams aim to keep the number of iterations between 1 and
3

Code Format

Prettier - JavaScript

Using consistent indentation, such as two or four spaces per level
Using camelCase for variable and function names
Placing opening braces on the same line as the associated statement or declaration
Using semicolons to terminate statements
Using single quotes for strings, unless the string contains a single quote
Using === and !== instead of == and != for comparisons
Limiting line lengths to 80-120 characters to improve readability.

Example: .prettier.json

Indentation: Use four spaces per indentation level. Avoid using tabs or a mix of tabs and
spaces for indentation.
Line length: Keep lines of code to a maximum of 79 characters. If a line needs to be
longer, break it into multiple lines.
Naming conventions: Use lowercase letters for variable names, and separate words with
underscores. Use Capitalized for class names, and lowercase_with_underscores for
module names.
Imports: Import one module per line, and place imports at the top of the file. Use relative
imports for intra-package imports.
Function and class definitions: Use two blank lines to separate function and class
definitions from other code.
Blank lines: Use blank lines to separate logical sections of code. For example, use a single
blank line to separate method definitions in a class.

Example: setup.cfg

{
 "trailingComma": "es5",
 "tabWidth": 2,
 "useTabs": false,
 "semi": true,
 "singleQuote": true,
 "printWidth": 80,
 "singleAttributePerLine": true
}

Python - Black

[flake8]
max-line-length = 79
inline-quotes = single
accept-encodings = utf-8
isort-show-traceback = True

To use the Flake8 in VS Code, you can install the "Python" extension from the VS Code
marketplace. This extension provides a built-in linter that can use the Flake8 configuration in your
setup.cfg file. Once you have the extension installed, open a Python file in VS Code and the linter
should automatically start providing feedback on your code.

To use the Black in VS Code, you can install the "Python" extension and the "Black" extension from
the VS Code marketplace. Once you have both extensions installed, you can enable Black as the
default formatter by adding the following line to your VS Code settings:

With this setting enabled, VS Code will automatically format your code using Black whenever you
save a Python file. You can also customize how VS Code reads your setup.cfg file by adding the
following line to your VS Code settings:

To auto-format your JavaScript code using Prettier in Visual Studio Code (VS Code), you can install
the Prettier extension from the VS Code marketplace. This extension provides automatic code
formatting using the Prettier code formatter.

Open your VS Code settings by pressing Ctrl+, (Windows and Linux) or Command+, (macOS). In
the search bar at the top of the settings window, search for "Prettier". Under "Prettier: Config Path" ,
enter the path to your .prettier.json configuration file. With these settings in place, whenever you
save a JavaScript file in VS Code, the Prettier extension will automatically format your code
according to the options specified in your .prettier.json configuration file.

You can also use the Prettier and Black in Vim by adding the following lines to your Vim
configuration file:

Excluding some directories:
exclude = .git,__pycache__

[tool.black]
line-length = 79

Text Editor Setup
Visual Studio Code

"python.formatting.provider": "black"

"python.linting.flake8Path": "/path/to/flake8"

Vim / Neo-Vim

For Emacs, you can use the before-save-hook feature to run a command before saving the file. Add
following lines to your ~/.emacs.d/init.el:

These standards is defined by Project maintainer / Team Lead, it should follow best practices
and established coding conventions. There are many aspects to code quality, but some common
factors include:

" Format code using Black and Prettier when saving
augroup autoformat
 autocmd!
 autocmd BufWritePre *.py :%!black -
 autocmd BufWritePre *.js :silent! %!prettier --stdin --semi --single-quote --no-bracket-spacing --tab-width 2
augroup END

GNU Emacs

;; Format Python code using Black when saving
(defun format-python-code-with-black ()
 (when (eq major-mode 'python-mode)
 (progn
 (call-process-region
 (point-min) (point-max) "black" t t nil "-")
 (save-buffer))))

;; Format JavaScript code using Prettier when saving
(defun format-javascript-code-with-prettier ()
 (when (eq major-mode 'js-mode)
 (progn
 (call-process-region
 (point-min) (point-max) "prettier" t t nil "--stdin" "--single-quote" "--no-bracket-spacing" "--tab-width=2")
 (save-buffer))))

(add-hook 'before-save-hook #'format-python-code-with-black)
(add-hook 'before-save-hook #'format-javascript-code-with-prettier)

Please ask questions or raise concerns if you're not sure how to follow the code format

Quality Control

1. Readability: The code should be easy to understand and follow, with clear and consistent
formatting and naming conventions.

2. Maintainability: The code should be modular and easy to modify, with clear separation
of concerns and a well-defined structure.

3. Efficiency: The code should be optimized for performance and resource usage, with
efficient algorithms and data structures.

4. Robustness: The code should handle errors and unexpected inputs gracefully, with
appropriate error handling and testing.

5. Security: The code should be designed with security in mind, with appropriate measures
to protect against potential vulnerabilities and attacks.

Example python code that following code quality standards:

This code is a function that calculates the average of a list of numbers. It follows some good coding
practices, such as:

Checking the input parameter to make sure it's a list before proceeding
Handling the case where the input list is empty
Using descriptive variable names that make the code easier to understand
Using Python's built-in functions like isinstance and sum to write concise and readable
code
Raising a meaningful exception when the input is not of the expected type

On the other hand, here's an example of bad code that doesn't follow code quality standards:

def calculate_average(numbers):
 if not isinstance(numbers, list):
 raise TypeError("Input must be a list of numbers.")

 if len(numbers) == 0:
 return 0

 total = sum(numbers)
 return total / len(numbers)

def avg(num1, num2, num3):
 if not isinstance(num1, (int, float)):
 return "num1 must be a number"
 if not isinstance(num2, (int, float)):
 return "num2 must be a number"
 if not isinstance(num3, (int, float)):
 return "num3 must be a number"

This code also calculates the average of three numbers, but it's written in a way that violates good
coding practices, such as:

Hard-coding the number of input parameters, which would require changing the code if
we wanted to calculate the average of more or fewer numbers
Returning a string message instead of raising an exception when the input is not of the
expected type
Using a variable name sum that's the same as a built-in Python function, which can cause
confusion and errors
Not handling cases where the input values might be invalid or lead to errors

There are also several principles that are widely recognized as important for writing high-quality
code. Here are some of the most important ones:

SOLID is an acronym for a set of principles that were developed to guide object-oriented design.
The principles are:

1. Single Responsibility Principle: Each class should have a single responsibility.
2. Open-Closed Principle: Classes should be open for extension but closed for modification.
3. Liskov Substitution Principle: Sub-types should be substitutable for their base types.
4. Interface Segregation Principle: Clients should not be forced to depend on interfaces they

don't use.
5. Dependency Inversion Principle: High-level modules should not depend on low-level

modules; both should depend on abstractions.

Code example:

 sum = num1 + num2 + num3
 average = sum / 3
 return average

SOLID

class Circle:
 def __init__(self, radius):
 self.radius = radius

 def area(self):
 return 3.14 * (self.radius ** 2)

class Square:
 def __init__(self, side):
 self.side = side

This code defines two classes, Circle and Square , each with a single responsibility of calculating its
own area. This adheres to the Single Responsibility Principle of SOLID. Both classes use a common
interface (the area() method) that makes them interchangeable, which adheres to the Liskov
Substitution Principle. The code is also open to extension (adding new shapes) but closed to
modification, which adheres to the Open-Closed Principle.

Example of code that does not follow SOLID:

This code defines two classes, User and UserManager . The User class has the responsibility of
storing information about a single user, and the UserManager class has the responsibility of
managing a list of users and saving them to a database. However, the UserManager class violates
the Single Responsibility Principle by having both responsibilities of creating users and saving them
to the database. This makes the code harder to maintain and test.

References:

https://towardsdatascience.com/solid-coding-in-python-1281392a6a94
https://realpython.com/solid-principles-python

 def area(self):
 return self.side * self.side

shapes = [Circle(5), Square(10)]
total_area = sum(shape.area() for shape in shapes)

class User:
 def __init__(self, name, email):
 self.name = name
 self.email = email

 def save(self):
 # Code to save user to database
 pass

class UserManager:
 def __init__(self):
 self.users = []

 def add_user(self, name, email):
 user = User(name, email)
 self.users.append(user)
 user.save()

https://towardsdatascience.com/solid-coding-in-python-1281392a6a94
https://realpython.com/solid-principles-python

This principle states that we should avoid duplicating code and instead aim to write code that is
reusable and modular.

Code Example:

This code calculates the sum and average of a list of numbers. Instead of duplicating the code to
sum and average the list of numbers, the calculate_sum function is defined and reused in the
calculate_average function. This makes the code more concise, easier to maintain and less error-
prone.

Example of code that does not follow DRY:

This code also calculates the sum and average of a list of numbers, but it repeats the code to
calculate the sum in both functions. This makes the code longer, harder to maintain and more
error-prone. If a bug is found in the sum calculation, it would have to be fixed in both functions.

DRY - Don't Repeat Yourself

DRY approach
def calculate_sum(numbers):
 return sum(numbers)

def calculate_average(numbers):
 if not numbers:
 return 0
 return calculate_sum(numbers) / len(numbers)

Not DRY approach
def calculate_sum(numbers):
 total = 0
 for num in numbers:
 total += num
 return total

def calculate_average(numbers):
 total = 0
 for num in numbers:
 total += num
 if len(numbers) == 0:
 return 0
 return total / len(numbers)

By refactoring the code to follow the DRY principle, we could improve the code quality and avoid
duplicating code. This would lead to more maintainable and efficient code in the long run.

References:

https://realpython.com/lessons/zen-of-python/
https://medium.com/technology-hits/dry-dont-repeat-yourself

This principle suggests that we should aim for simplicity in our code and avoid unnecessary
complexity.

Code Example:

Above code defines a function that checks whether a given word is a palindrome (i.e. reads the
same backward as forward). The function is concise and easy to understand, adhering to the KISS
principle.

Example of code that does not follow KISS:

This code defines a function that calculates the nth number in the Fibonacci sequence recursively.
While this code is functional, it can be hard to read and understand, especially for those who are
not familiar with the Fibonacci sequence or recursive functions. This violates the KISS principle by
introducing unnecessary complexity.

References:

https://code-specialist.com/code-principles/kiss
https://softwareengineering.stackexchange.com/questions/178294/kiss-principle-applied-
to-programming-language-design

KISS - Keep It Simple, Stupid

def is_palindrome(word):
 return word == word[::-1]

def calculate_fibonacci(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return calculate_fibonacci(n-1) + calculate_fibonacci(n-2)

https://realpython.com/lessons/zen-of-python/
https://medium.com/technology-hits/dry-dont-repeat-yourself-c1a8086530be
https://code-specialist.com/code-principles/kiss
https://softwareengineering.stackexchange.com/questions/178294/kiss-principle-applied-to-programming-language-design
https://softwareengineering.stackexchange.com/questions/178294/kiss-principle-applied-to-programming-language-design

This principle suggests that we should avoid adding functionality to our code until we actually need
it.

Code Example:

This code defines a function that multiplies two numbers together. It does only what is needed for
the immediate task and does not add any unnecessary functionality.

Example of code that does not follow YAGNI:

This code defines a Question class with several attributes and methods, including attributes for
options , and methods for adding options for the options attribute. However, it's unclear whether all
of these attributes and methods will be used in the immediate project, and whether they will be
needed in the future. By Adding unnecessary functionality and complexity to the code violates the
YAGNI principle.

References:

https://dev.to/richardwynn/yagni-principle-in-100-seconds-1i6j
https://solidstudio.io/blog/deep-dive-into-kiss-and-yagni

The idea of clean code is to write code that is easy to read, understand, and maintain. This involves
using clear and descriptive variable and function names, following good coding conventions, and
breaking code up into small, modular functions. Example:

YAGNI - You Aren't Gonna Need It

def multiply_numbers(num1, num2):
 return num1 * num2

class Question:
 def __init__(self, name: str, options: list, type: TypeEnum):
 self.name = name
 self.options = options
 self.type = type

 def set_options(self, options):
 self.options = options

Clean Code

def find_missing_number(numbers):
 """Find the missing number in a list of consecutive numbers."""

https://dev.to/richardwynn/yagni-principle-in-100-seconds-1i6j
https://solidstudio.io/blog/deep-dive-into-kiss-and-yagni

This code defines a function that finds the missing number in a list of consecutive numbers. The
function is well-organized, has a clear and descriptive function name and documentation, and uses
clear and concise variable names. This adheres to the Clean Code principle of writing code that is
easy to read, understand, and maintain.

Example of code that does not follow Clean Code:

This code defines the same function as the previous example, but with poorly named variables and
an unclear function name. It's harder to understand what the code does and what the variables
represent.

References:

Clean Code in Python by Mariano Anaya

Test-Driven Development (TDD) is considered a best practice in software development for several
reasons:

1. Improved Code Quality: TDD promotes writing high-quality code by focusing on small
units of functionality at a time. Developers write tests before writing the code, which helps
clarify the expected behavior and ensure that the code meets those requirements. By
continually running tests during development, developers can catch bugs early, leading to
cleaner and more robust code.

2. Faster Debugging and Bug Fixing: With TDD, bugs are often caught early in the
development process since tests are executed frequently. When a test fails, it indicates
the presence of a bug. Developers can then pinpoint the issue quickly and fix it before
moving forward. This iterative approach saves time in the long run by reducing the
debugging phase.

3. Facilitates Refactoring: Refactoring is the process of improving code without changing
its behavior. TDD provides a safety net for refactoring by ensuring that tests act as a

 n = len(numbers)
 expected_sum = (n + 1) * (n + 2) // 2
 actual_sum = sum(numbers)
 return expected_sum - actual_sum

def fmnm(nmbrs):
 n = len(nmbrs)
 es = (n + 1) * (n + 2) // 2
 ac = sum(nmbrs)
 return es - ac

Test-Driven Development

https://www.perlego.com/book/2094754/clean-code-in-python-develop-maintainable-and-efficient-code-2nd-edition-pdf

safety harness. Developers can confidently make changes to the code-base, knowing that
if they accidentally introduce a bug, the tests will catch it. This ability to refactor code
without fear encourages cleaner and more maintainable code-bases.

4. Regression Detection: TDD's incremental and iterative nature ensures that changes to
the code-base are made in small, manageable steps. After each step, developers run the
tests to verify that the existing functionality is still intact. If a test fails, it immediately
highlights a regression, indicating that the refactoring has unintentionally broken existing
behavior. This immediate feedback helps pinpoint the cause of the regression, allowing
developers to quickly identify and rectify the issue.

5. Documentation and Examples: Test cases serve as a form of documentation for the
code-base. They provide concrete examples of how the code should behave and can act
as living documentation for other developers. Newcomers to the code-base can
understand the intended functionality by reading the tests, facilitating faster on-boarding
and reducing reliance on outdated or missing documentation.

6. Confidence and Peace of Mind: TDD gives developers confidence in their code-base.
Passing tests indicate that the code behaves as expected, reducing uncertainty and
providing peace of mind. Developers can make changes to the code-base with confidence,
knowing that if they accidentally break something, the tests will quickly alert them.

Let's say we want to create a simple function that adds two numbers together. Using TDD, we
would follow these steps:

1. Write a test case that defines the behavior of the function:

import unittest

class TestAddition(unittest.TestCase):
 def test_add_numbers(self):
 result = add_numbers(2, 3)
 self.assertEqual(result, 5)

2. Run the test case and observe that it fails since the add_numbers function does not exist
yet.

3. Implement the add_numbers function to pass the test:

def add_numbers(a, b):
 return a + b

4. Run the test case again and verify that it passes.

While TDD has many advantages, it may not be suitable for every situation or team. It
requires discipline and initial investment in writing tests, which can slow down the
development process in the short term.

Example of TDD

References:

https://www.linkedin.com/pulse/what-advantages-test-driven-development-fortegroup
https://www.codica.com/blog/test-driven-development-benefits/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-test-driven-
development-tdd/

Documentation serves as a valuable resource for current developers, and future maintainers, and
maintaining the software. Here are a minimum requirements for Documentation:

API Documentation: This type of documentation focuses on explaining the usage,
inputs, outputs, and behavior of application programming interfaces (APIs). It helps
developers integrate and interact with the code-base effectively.
Installation and Configuration Guides: These guides explain the installation process,
system requirements, and configuration options for deploying and setting up the software
environment.
Release Notes: Release notes provide information about new features, bug fixes, known
issues, and compatibility changes in each software release. They help users and
stakeholders understand the changes and potential impacts of an upgrade.
User Manuals: User manuals or guides are created to assist end-users in understanding
how to use the software. They typically provide step-by-step instructions, explanations of
features, and troubleshooting tips.

Important points about documentation:

Keep it Up to Date: Regularly review and update documentation to ensure its accuracy
and relevance. Outdated or incorrect documentation can be misleading and
counterproductive.
Balance Detail and Conciseness: Document important details without overwhelming
the reader. Use clear and concise language, provide examples, and consider different
audiences' needs.
Use Consistent Formatting: Establish a consistent formatting style throughout the
documentation to enhance readability. Use headings, bullet points, and formatting
conventions to structure the content effectively.
Include Examples and Visuals: Examples, diagrams, and screenshots can significantly
enhance understanding, especially for complex concepts or workflows. Visual aids help
illustrate relationships, dependencies, and system flows.

ensure that your code is testable and you are only writing code that isnecessary pass the
test.

Documentation

https://www.linkedin.com/pulse/what-advantages-test-driven-development-fortegroup
https://www.codica.com/blog/test-driven-development-benefits/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-test-driven-development-tdd/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-test-driven-development-tdd/

Make it Searchable: Use proper organization and indexing techniques to make
documentation easily searchable. This enables users to quickly find the information they
need.
Collect Feedback: Encourage users and developers to provide feedback on the
documentation. Feedback can help identify areas for improvement, clarify ambiguities,
and address common pain points.

References:

https://blog.jetbrains.com/writerside/2022/01/the-holy-grail-of-always-up-to-date-
documentation/
https://medium.com/@lanceharvieruntime/code-documentation-waste-of-time-or-vital-for-
success-in-c-and-c-development-c1618c0c2f7a

It's essential to include testing in your development process to catch bugs early and ensure that
your application meets the required quality standards. There are several types tests that you
should consider writing to ensure the quality and reliability of your code.

These tests are written to test the smallest units of code in isolation, such as individual functions or
methods. They are usually automated and should be written for every new piece of code you add
to your application.

Example: test_category_data_frame.py

These tests check how different parts of the application work together. They test how components
interact and ensure that the application functions as expected when all the pieces are put together.

Example: tests_form_approval.py

These tests focus on testing the application's features and functionalities. They ensure that the
user's requirements are met and that the application works as intended.

Example: geo.test.js

Tests

Unit tests

Integration tests

Functional tests

https://blog.jetbrains.com/writerside/2022/01/the-holy-grail-of-always-up-to-date-documentation/
https://blog.jetbrains.com/writerside/2022/01/the-holy-grail-of-always-up-to-date-documentation/
https://medium.com/@lanceharvieruntime/code-documentation-waste-of-time-or-vital-for-success-in-c-and-c-development-c1618c0c2f7a
https://medium.com/@lanceharvieruntime/code-documentation-waste-of-time-or-vital-for-success-in-c-and-c-development-c1618c0c2f7a
https://github.com/akvo/Akvo-ResponseGrouper/blob/main/tests/test_category_data_frame.py
https://github.com/akvo/national-wash-mis/blob/main/backend/api/v1/v1_forms/tests/tests_form_approval.py
https://github.com/akvo/national-wash-mis/blob/main/frontend/src/lib/__test__/geo.test.js

These tests are designed to check the application's ability to handle a large number of users and
data without slowing down or crashing.

Example: test_10_stress_and_timeout.py

These tests ensure that the application is secure and that sensitive data is protected from
unauthorized access.

Example: test_01_auth.py

In an end-to-end test, the system is tested as a whole, without any isolation of its components. This
means that the tests encompass the entire stack of the software system, including the user
interface, application logic, and database. The objective of these tests is to verify that the software
system is functioning as expected and that the user's needs are met.

Example: 00_login_with_verified_super_admin.side

Code coverage is a measure of how much of a software application's source code is executed
during the testing process. It is used to determine the effectiveness of software testing and the
quality of the testing suite. Code coverage is expressed as a percentage, representing the
percentage of code that was executed during testing. For example, if a test suite runs through 80%
of the lines of code in a software application, then the code coverage is said to be 80%.

Tech consultancy team uses Coveralls because it provides a simple and efficient way to measure
code coverage in our development process. Coveralls can be integrated with GitHub repositories to
provide code coverage reports for each pull request, allowing developers to quickly and easily
identify code changes that have impacted test coverage. With this integration, we can ensure that
all changes to the code-base are properly tested, and we can catch any regressions before they
make it into the main code-base.

Example code coverage summary by Coveralls:

Performance tests

Security tests

End-to-end tests

Code Coverage

Coveralls

https://github.com/akvo/wai-sdg-portal/blob/3b63ba7b0a9d66e5c4f27563cc8d4dd1c1ffb39a/backend/tests/test_10_stress_and_timeout.py#L14
https://github.com/akvo/wai-sdg-portal/blob/3b63ba7b0a9d66e5c4f27563cc8d4dd1c1ffb39a/backend/tests/test_01_auth.py
https://github.com/akvo/isco/blob/main/tests/sides/00_login_with_verified_super_admin.side
https://coveralls.io/

Example coveralls notifications on Pull Requests:

This means that at least 80% of the source code in our projects must be executed during testing.
We have set this requirement to ensure that our software is thoroughly tested and that we are
delivering high-quality products to our customers. By striving for a minimum code coverage of
80%, we can identify areas of the code that are not being adequately tested, and we can ensure
that we are catching potential issues before they make it into production. We encourage the TC
team to aim for a code coverage percentage higher than the minimum requirement, as this will
help us to build more reliable and robust software.

Minimum Coverage Requirements

Based on the Tech Consultancy KPI, we must established a minimum code coverage
requirement of 80%

Continuous Integration / Continuous
Delivery

https://wiki.cloud.akvo.org/uploads/images/gallery/2023-05/oNiMGCMZyIlcwFlb-coveralls.png
https://wiki.cloud.akvo.org/uploads/images/gallery/2023-05/Rr8Zj7ByT4yhlyT4-coveralls-notification.png
https://wiki.cloud.akvo.org/books/tech-team-operations/page/operating-model#bkmrk-tc-team

By implementing Continuous Integration/Continuous Delivery (CI/CD) with Semaphore or GitHub
Workflows, we continuously build, test, and deploy code changes in a repeatable, automated way.
This means that our development and operations teams can collaborate more effectively and
identify issues early on in the development process, leading to faster resolution and a more stable
application.

Semaphore (Semaphore CI) is the most frequently used for Tech Consultancy Projects. Particularly
dealing with Kubernetes deployment, Semaphore provides more customization options for
workflow execution environments and integrates with Kubernetes for seamless deployment.

Semaphore also provides more advanced customization options for workflow execution
environments, such as custom Docker images and caching, which can help speed up your builds
and deployments.

Example config:

Semaphore CI

version: v1.0
name: RTMIS
agent:
 machine:
 type: e1-standard-2
 os_image: ubuntu1804
global_job_config:
 secrets:
 - name: GCP
 - name: docker-hub-credentials
 - name: coveralls
 - name: rtmis
 prologue:
 commands:
 - echo "${DOCKER_PASSWORD}" | docker login --username
 "${DOCKER_USERNAME}" --password-stdin
 - export CI_COMMIT="${SEMAPHORE_GIT_SHA:0:7}"
 - export CI_BRANCH="${SEMAPHORE_GIT_BRANCH}"
 - export CI_TAG="${SEMAPHORE_GIT_TAG_NAME}"
 - export CI_PULL_REQUEST="${SEMAPHORE_GIT_REF_TYPE/pull-request/true}"
 - export CI_COMMIT_RANGE="${SEMAPHORE_GIT_COMMIT_RANGE}"
 - export CLOUDSDK_CORE_DISABLE_PROMPTS=1
 - export COMPOSE_INTERACTIVE_NO_CLI=1

 - export COVERALLS_REPO_TOKEN="${COVERALLS_RTMIS_TOKEN}"
 - export SERVICE_ACCOUNT=/home/semaphore/credentials
blocks:
 - name: 'Build, Test & Push'
 skip:
 when: "tag =~ '.*'"
 task:
 prologue:
 commands:
 - checkout
 - cache restore "npm-$(checksum frontend/package.json)"
 - cache restore "node-modules-$(checksum frontend/package.json)"
 - cache restore "pip-$(checksum backend/requirements.txt)"
 - cache restore "images-${SEMAPHORE_PROJECT_ID}"
 - cache restore "$SEMAPHORE_PROJECT_ID-$SEMAPHORE_GIT_BRANCH"
 epilogue:
 commands:
 - cache store "npm-$(checksum frontend/package.json)" "$HOME/.npm"
 - cache store "node-modules-$(checksum frontend/package.json)"
 "frontend/node_modules"
 - cache store "pip-$(checksum backend/requirements.txt)"
 "backend/.pip"
 - cache store "images-${SEMAPHORE_PROJECT_ID}" "ci/images"
 - cache store "$SEMAPHORE_PROJECT_ID-$SEMAPHORE_GIT_BRANCH"
 "$HOME/.cache"
 jobs:
 - name: Build & Test
 commands:
 - ./ci/build.sh
 - ./ci/deploy.sh
 - name: "Promote to production"
 run:
 when: "tag =~ '.*'"
 task:
 jobs:
 - name: Promote to production
 commands:
 - checkout
 - ./ci/deploy.sh

Source: https://github.com/akvo/rtmis

In some other cases, when we only need to run tests or code quality checks (e.g. develop a
package library), Semaphore may not be needed. That's why we take advantage of the GitHub
Workflow, because it's simple, integrated, and easy to use.

Example config:

GitHub Workflows

name: Build & Test
on:
 push:
 branches:
 - main
 - feature*
 pull_request:
 branches:
 - main
jobs:
 build:
 runs-on: ubuntu-latest
 strategy:
 matrix:
 python: [3.8, 3.9]
 steps:
 - uses: actions/checkout@v2
 - name: Setup Python
 uses: actions/setup-python@v2
 with:
 python-version: ${{ matrix.python }}
 - name: Install Tox and any other packages
 run: pip install tox
 - name: Run Tox
 # Run tox using the version of Python in `PATH`
 run: tox -e py
 test:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout
 uses: actions/checkout@v2

https://github.com/akvo/rtmis/blob/main/.semaphore/semaphore.yml

Source: https://github.com/akvo/Akvo-ResponseGrouper

When a build fails in your CI/CD pipeline, it's important for developers to take prompt action to
resolve the issue. Here are some steps that developers can take when a build fails:

1. Review the build logs: The first step is to review the build logs to
identify the cause of the failure. The logs should provide detailed
information about what went wrong, such as error messages or stack
traces.

2. Reproduce the issue: Once the cause of the failure has been identified,
the next step is to reproduce the issue locally.

3. Fix the issue: Once the issue has been reproduced, developers should
work to fix the problem.

4. Test the fix: After making the necessary changes, developers should
test the fix locally to ensure that it resolves the issue.

5. Communicate with the team: Finally, it's important for developers to
communicate with their team about the issue and the steps taken to
resolve it.

Example GitHub Workflows Notification on Slack:

 - name: Run Container
 env:
 COVERALLS_REPO_TOKEN: ${{ secrets.COVERALLS_REPO_TOKEN}}
 run: docker compose -f "docker-compose.ci.yml" up --exit-code-from backend

Slack Notifications

https://github.com/akvo/Akvo-ResponseGrouper/tree/main/.github/workflows

Example Semaphore Notification on Slack:

1.

Typically you will get notification of the CI status in different channels on Slack (e.g #proj-
wcaro-mis-dev-notifications)

https://akvo.slack.com/archives/C04UQ8VCMMH
https://akvo.slack.com/archives/C04UQ8VCMMH

Draft for @Anjar

Developer Sprint should only started after we have a design document that outlines the system
architecture, data models, algorithms, and other technical details. During the developer sprint, the
development team works on developing new features or fixing bugs that have been identified.
Sprints are typically short, time-boxed periods of development that focus on a specific set of tasks
that already estimated in Asana tasks.

Release / Deployment

Summary

Example of a competed task in Asana:

At the end of each sprint, the team should mark the Asana tasks as completed with it's
Actual time.

If you merge your local branch into the origin branch, there will be only a single commit reported
on the origin branch you've merged even if your local branch has multiple commits, regardless of
whether you use a plain git pull or with --squash merge. You should always do git pull --rebase instead
of git merge .

FAQ
I did git commit and found that my local branch is not updated, how to
justify it?

I've run the test locally and everything is fine, but why did the build
fails?

https://wiki.cloud.akvo.org/uploads/images/gallery/2023-05/iHV5tdPwVil13LUu-complete-asana.png

Become friends with your broken builds. So, your build fails… what exactly does that mean? You
can always check the pipeline build from
https://akvo.semaphoreci.com/projects/<repo_name>. Checking the job output should point
you to a failing test. There are several reasons:

Build or Deploy code has an error, DevOps to blame.
Network test (eg. basic.sh) is error. Meaning that there are missing URLs or the
network/proxy is misconfigured.
Code Quality (Flake, ES-Lint, or Prettier) warning

https://github.com/akvo/rtmis/blob/ba35dc4d0a9a633ac82c7a1c93325d8c8efe9e2f/ci/test/basic.sh#L24-L25

