
The Mobile Application for Real-Time Management Information System (RTMIS) plays a pivotal role
in facilitating remote data collection, primarily designed to support offline data submission for
enumerators. Enumerators, who are an integral part of the data collection process, are assigned
the responsibility of collecting critical information beyond the scope of Data Collectors. This mobile
application serves as an indispensable tool, equipping enumerators with the means to efficiently
gather data, even in areas with limited or no connectivity.

The Mobile Application for Real-Time Management Information System (RTMIS) is built upon a
module derived from the National Management Information System (NMIS) Mobile Application (
https://github.com/akvo/nmis-mobile). The NMIS Mobile App serves as a generic data collection tool
designed to accommodate the needs of multiple services and organizations.

Within this context, the RTMIS Mobile Application takes center stage as a specialized module
tailored to support the unique requirements of real-time data collection for management
information. Specifically crafted to cater to the demands of the RTMIS, this mobile application
empowers enumerators and data collectors with a targeted set of features and functionalities.

1. Setup New Expo Application:
Create a new Expo application as a foundation for the RTMIS Mobile App.
Configure the Expo environment with the necessary dependencies.

2. Integration from nmis-mobile Repository:
Copy the entire app folder from the nmis-mobile repository to the RTMIS
repository.
Ensure that the integration includes all relevant code, assets, and configurations.
Make the necessary modifications to the module to align it with the specific
requirements and functionalities of the RTMIS back-end.

Mobile Application

Introduction

Requirements
Initial Setup

https://github.com/akvo/nmis-mobile
https://github.com/akvo/nmis-mobile/tree/main/app


3. Docker Compose Setup for Development:
Implement Docker Compose setup to enable seamless development of the Mobile
App within the RTMIS project.
Integrate the Mobile App into the RTMIS development environment to ensure
compatibility and ease of testing.

4. Authentication Method Enhancement:
Implement changes to introduce a new and improved authentication method for the
RTMIS Mobile App.
Ensure that the new authentication method aligns with the security requirements
and standards of the RTMIS project.
Update relevant documentation and user instructions to reflect the changes.

5. CI/CD Setup for Mobile App Deployment:
Establish a robust CI/CD pipeline for the RTMIS Mobile App, enabling automated
deployment to the Expo platform.
Configure the pipeline to trigger builds and deployments based on code changes and
updates to the Mobile App repository.
Ensure that the CI/CD setup includes proper testing and validation procedures before
deploying to Expo

6. Integration of Django Mobile Module:
Incorporate the Django mobile module from the National Wash MIS repository
folder: v1_mobile into the RTMIS back-end.

To support the integration of the mobile application, several critical updates are required for both
the RTMIS platform's back-end and front-end components. These modifications encompass a range
of functionalities designed to seamlessly accommodate the needs of the mobile application. Key
updates will include, but are not limited to:

1. Authentication and Authorization API for Mobile Users:
Integrate automated pass-code generation functionality to generate unique 6-digit
alpha-numeric pass-codes for multiple mobile data collector assignment.
Establish an API mechanism to authenticate and authorize mobile users based on a
pass-code. This ensures secure access to the RTMIS platform while simplifying user
management for mobile data collectors.

2. Form List and Cascade Retrieval API:
Develop Cascade SQLite generator for both Entities and Administration.
Implement an API that enables the mobile application to retrieve forms and cascades
from the RTMIS platform. This functionality is vital for data collection activities
performed by enumerators and data collectors in the field.

3. Data Monitoring API:

Overview

1. Back-end

https://github.com/akvo/national-wash-mis/tree/main/backend/api/v1/v1_mobile


Modify data/batch submission-related models and API to support monitoring
submission.
Modify approval workflow-related models and API to support monitoring submission.

4. Data Synchronisation API:
Make the necessary modifications to the v1_mobile module to align it with the
specific requirements and functionalities of the RTMIS back-end:

Preload existing data-points.
Modify Mobile Form submission-related models and API to support monitoring
submission.

5. Data Entry Staff Data Editing and Approval Workflow:
Develop functionality for Data Entry Staff to add Mobile Assignments. The Data Entry
Staff user can have multiple mobile assignments, which will require village ID and
form ID. When a mobile assignment is created, it will generate a pass-code that will
be used by Enumerators to collect data in the field via the Mobile App.
Develop functionality for Data Entry Staff to edit data submitted via the mobile
application.

6. Form Updates:
Develop New Question Type: Data-point Question
New Question Parameters: Display Only

1. Dedicated "Mobile Data Collectors" Section:
Create a dedicated section within the RTMIS front-end, labeled "Mobile Data
Collectors," where Data Entry Staff can easily access and manage mobile data
collector assignments.

2. "Add Mobile Data Collector" Feature:
Implement a user-friendly feature within the "Mobile Data Collectors" section that
allows Data Entry Staff to initiate the process of adding mobile data collectors.

3. Assignment Details Form:
Develop a user-friendly form that Data Entry Staff can use to input assignment
details:

the name of the assignment
Level (for scoping the administration selection)
Multiple Administration village selection
and form(s) selection.

Once the Data Entry Staff presses "create," the back-end will process it and return a
6-digit Alphanumeric code that will be used for mobile authentication.

4. Communication of Pass-codes:
Provide a mechanism within the front-end that allows Data Entry Staff to easily
communicate the generated pass-codes to the respective mobile data collectors.

5. User Guidance (RTD Updates):
Include user guidance elements and feedback mechanisms in the front-end to assist
Data Entry Staff throughout the process, ensuring that they understand the workflow
and status of each assignment.

2. Front-end



1. Mobile App User Schema:
Modify Authentication Method

2. Mobile Database Modification
Modify the Database Schema to support Monitoring and Cascade Sync Updates
Read more: Mobile Database Modification

3. Mobile UI Modification
Develop a screen where user can see and sync the list of existing data-points
Develop a screen where user can choose to add new data-point or edit existing data-
point

Read more: Mobile UI Modification

Table name: mobile_assignment_group
Model name: MobileAssignmentGroup
Path to Model: api.v1.v1_mobile.models

3. Mobile App

Back-end
Back-end Database Migrations
Mobile Assignment Schema
1. Mobile Group (PENDING)

https://wiki.cloud.akvo.org/books/mobile-app-for-national-management-information-system/page/low-level-design#bkmrk-database-schema
https://wiki.cloud.akvo.org/books/rtmis/page/mobile-application#bkmrk-mobile-database
https://wiki.cloud.akvo.org/uploads/images/gallery/2023-11/LZlIJSGaIs5x6WJv-nmis-sync.png
https://wiki.cloud.akvo.org/books/rtmis/page/mobile-application#bkmrk-additional-changes-o


Migrations: New Table

pos column null dtype len default

1 id No Integer - (Auto-increment)

3 name No Text 6 -

4 created_by

Table name: mobile_assignment
Model name: MobileAssignment
Path to Model: api.v1.v1_mobile.models
Migrations: Alter Table, add name

pos column null dtype len default

1 id No Integer - (Auto-increment)

2 name No Text 255 -

3 passcode No Text 6 (Auto-generated)

4 token No Text 255 JWT String

5 created_by No Integer - (Primary Key)

Explanation: The MobileAssignment  table stores information about mobile data collector
assignments. The id  column serves as the primary key and a unique identifier for each
assignment. The name  column holds the assignment's name or description, while the passcode
column stores a unique pass-code for mobile data collector access.

Table name: mobile_assignment_form_administration
Model name: MobileAssignmentFormAdministration
Path to Model: api.v1.v1_mobile.models
Migrations: New Table

pos column null dtype len default

1 id No Integer - (Auto-increment)

2 assignment_id No Integer - -

3 form_id No Integer - -

4 administration_id No Integer - -

2. Mobile Assignment Table

3. Mobile Assignment Form Administration Table (Junction):



Explanation: This table serves as a junction table that establishes the many-to-many relationship
between mobile  assignments ( MobileAssignment ), forms ( form_id ), and administrative level (
administration_id ). The id  column remains as the primary key, and the other columns associate the
rows with the respective assignment, form, and administrator.

Table name: data
Model name: FormData & PendingFormData
Path to Mode; api.v1.v1_data.models
Migrations: Alter Table, add uuid

pos table column null dtype len default

1 data id NO bigint   data_id_seq

2 data form_id NO bigint    

3 data administration_id NO bigint

4 data name NO text    

5 data geo YES jsonb  

6 data created NO datetime    

7 data updated YES datetime    

8 data created_by_id NO bigint    

9 data updated_by_id YES bigint    

10 data uuid NO uuid uuid.uuid4

Table name: question
Model name: Questions
Path to Model: api.v1.v1_forms.models
Migrations: Alter Table, add fn, tooltip, display_only, meta_uuid, and monitoring

pos table column null dtype len default

Current Schema Updates
1. Data-point Table

1. Question Table



1 question id NO bigint   question_id_seq

2 question order YES bigint    

3 question text NO text    

4 question name NO character varying 255  

5 question type NO int    

6 question meta NO bool    

7 question required NO bool    

8 question rule YES jsonb    

9 question dependency YES jsonb    

10 question form_id NO bigint    

11 question question_group_id NO bigint    

12 question api YES jsonb    

13 question extra YES jsonb    

14 question tooltip YES jsonb

15 question fn YES jsonb

16 question display_only YES bool

17 question meta_uuid YES bool

18 question disabled YES jsonb

18 question hidden YES jsonb

Table name: option
Model name: QuestionOptions
Path to Model: api.v1.v1_forms.models
Migrations: Alter Table, add color

2. Option Table



pos table column null dtype len default

1 option id NO bigint   option_id_seq

2 option order YES bigint    

3 option code YES character varying 255  

4 option name NO text    

5 option other NO bool    

6 option question_id NO bigint    

7 option color YES text

Endpoint: api/v1/mobile-assignment/<id>
Method: POST / PUT
Authentication: Bearer Token
Payload:

Success Response (for POST request):

Explanation: 
id: id of the assignment
name: represents the name of assignment (can be person name, community or
organization).
administrations: list of administration_ids from administration table.
forms: list of forms for the mobile assignment

API Endpoints
New Endpoints
1. Create Mobile Assignment

{
  "name": "Kelewo Community Center Health Survey",
  "administrations": [321,398],
  "forms": [1,2,4],
}

{
  "id": 1,
  "passcode":"4dadjyla",
}



passcode: generated from CustomPasscode in utils.custom_helper via
MobileAssignmentManager

Endpoint: api/v1/mobile-assignment
Method: GET
Authentication: Bearer Token
Payload: None
Success Response:

In the updated RTMIS Mobile application, a significant change is being introduced to enhance
security and access control. This change involves modifying the token generation process for
Mobile Data Collector Assignments. Here's a detailed description of this update:

2. Get List of Mobile Assignment

{
  "current":1,
  "total":11,
  "total_page":2,
  "data": [{
    "id":1,
    "name": "Kelewo Community",
    "passcode": "3a45562",
    "forms": [{
      "id":1,
      "name": "Health Facilities"
    },{
      "id":2,
      "name": "CLTS",
    },{
      "id":3,
      "name": "Wash In Schools"
    }],
    "administrations": [{
      "id":765,
      "name": "Kelewo"
    }]
  }]
}

Token Modifications



Previous System: In the earlier version of the NMIS app, tokens were generated using
RefreshToken from rest_framework_simplejwt.tokens. This approach was suitable
when the Mobile App users were Data Entry Users themselves.  Previous token:

class MobileAssignmentManager(models.Manager):
    def create_assignment(self, user, name, passcode=None):
        token = RefreshToken.for_user(user)
        if not passcode:
            passcode = generate_random_string(8)
        mobile_assignment = self.create(
            user=user,
            name=name,
            token=token.access_token,
            passcode=CustomPasscode().encode(passcode),
        )
        return mobile_assignment

New Requirement: With the introduction of Mobile Data Collector Assignments, there's a
need to restrict token access to prevent unauthorized use of other endpoints.

Custom Token Implementation: The token generation process will be customized to
create tokens that are specifically restricted in their access capabilities.
Restricted Access: The custom token will only grant access to endpoints with the prefix
api/v1/mobile/device/*. This ensures that Mobile Data Collectors can access only the
necessary data and functionalities relevant to their assignments.
Security Benefit: This approach significantly enhances the security of the system by
ensuring that each token can only interact with a limited set of endpoints, thereby
reducing the risk of unauthorized access to sensitive data or functionalities.

1. Context and Need for Change

2. Custom Token Generation for Enhanced Security

3. Example Custom Token Generation

import jwt
from rtmis.settings import SECRET_KEY

def generate_assignment_jwt(assignment_id, allowed_forms_ids, administration_ids, secret_key):
    # Custom claim for Mobile Assignment
    custom_claim = {
        "assignment_id": assignment_id,
        "allowed_endpoints": "api/v1/mobile/device/*",



        "forms": allowed_forms_ids,
        "administrations": administration_ids
    }
    # Payload of the JWT without an expiration time
    payload = {
        "assignment": custom_claim
    }
    # Generate JWT token
    token = jwt.encode(payload, SECRET_KEY, algorithm="HS256")
    return token

# Example usage
secret_key = "your_secret_key"  # Secure, unguessable string
assignment_id = "assignment_123"  # Unique identifier for the mobile assignment
allowed_forms_ids = [101, 102, 103]  # Example list of allowed form IDs
administration_ids = [201, 202]  # Example list of allowed administration IDs

token = generate_assignment_jwt(assignment_id, allowed_forms_ids, administration_ids, secret_key)

4. Token Payload

{
  "user_id": "<the user who create assignment>",
  "assignment_id": "<assignment_id>",
  "allowed_endpoints": "api/v1/mobile/device/*",
  "administration_ids": ["administration_id"],
  "allowed_forms_ids": ["form_id"],
  "exp": 1701468103,
  "iat": 1701424903,
  "jti": "923cfad9ff244e6897bfef2260dde4ee",
  ...other_stuff
}

5. Example Custom Authentication

from rest_framework.authentication import BaseAuthentication
from rest_framework import exceptions
import jwt

class MobileAppAuthentication(BaseAuthentication):



Token Scope: The scope of the token is strictly limited to the specified API endpoints,
ensuring that Mobile Data Collectors cannot access other parts of the system.
Compatibility: The new token generation method should be compatible with the existing
system's infrastructure and authentication mechanisms.
User Experience: The change in token generation should be seamless to the users, with
no negative impact on the user experience for legitimate access.

    def authenticate(self, request):
        # Retrieve the token from the request
        token = request.META.get('HTTP_AUTHORIZATION')

        if not token:
            return None  # Authentication did not succeed

        try:
            # Decode the token
            decoded_data = jwt.decode(token, 'your_secret_key', algorithms=["HS256"])
            
            # Check if the token has the required claims
            assignment_info = decoded_data.get('assignment')
            if not assignment_info:
                raise exceptions.AuthenticationFailed('Invalid token')

            # Add more checks here if needed (e.g., allowed_forms_ids, administration_ids)

            # You can return a custom user or any identifier here
            return (assignment_info, None)  # Authentication successful

        except jwt.ExpiredSignatureError:
            raise exceptions.AuthenticationFailed('Token expired')
        except jwt.DecodeError:
            raise exceptions.AuthenticationFailed('Token is invalid')
        except jwt.InvalidTokenError:
            raise exceptions.AuthenticationFailed('Invalid token')

6. Token Implementation Considerations

Endpoint Modifications
1. Get List of Assigned Forms



Unlike nmis-mobile, In the RTMIS Mobile application, the option to add users manually from the
device will not be available (removed from the latest nmis-mobile). Consequently, when logging in,
the response will now include information about the assignmentName. The remaining data will
adhere to the existing structure of the previous Authentication API.

Endpoint: api/v1/device/auth
Method: GET
Authentication: None
Request Body:

New Response:

{"code": "<assignment_code_provided_by_admin>"}

{
  "name": "Kelewo Community",
  "syncToken": "Bearer eyjtoken",
  "formsUrl": [
    {
      "id": 519630048,
      "url": "/forms/519630048",
      "version": "1.0.0"
    },
    {
      "id": 533560002,
      "url": "/forms/533560002",
      "version": "1.0.0"
    },
    {
      "id": 563350033,
      "url": "/forms/563350033",
      "version": "1.0.0"
    },
    {
      "id": 567490004,
      "url": "/forms/567490004",
      "version": "1.0.0"
    },
    {
      "id": 603050002,
      "url": "/forms/603050002",

https://github.com/akvo/nmis-mobile
https://wiki.cloud.akvo.org/books/mobile-app-for-national-management-information-system/page/low-level-design#bkmrk-get-the-list-of-assi


Endpoint: api/v1/device/form/<form_id>
Method: GET
Authentication: None
Authorization: Bearer Token

The Individual Form will be the same as the previous response endpoint, with the only change
being in the schema of the cascade-type question as defined in the Mobile Cascade

Modification section. In the previous cascade-type question, the  parent_id  was an integer, acting
as the initial level cascade filter, so the first level of the cascade showed the children of the
parent_id . Now, we support multiple parent_id s, so the first level of the cascade represents the
parent_id s themselves.

Initial Result:

Final Result:

      "version": "1.0.0"
    }
  ],
  "certifications": []
}

2. Get Individual Form

"source": {
  "file": "cascade-296940912-v2.sqlite",
  "parent_id": 273
},

"source": {
  "file": "cascade-296940912-v2.sqlite",
  "parent_id": [273,234]
},

Form Updates
New Question Type
Data-point Question

https://wiki.cloud.akvo.org/books/mobile-app-for-national-management-information-system/page/low-level-design#bkmrk-example-json-form%3A
https://wiki.cloud.akvo.org/books/rtmis/page/mobile-application#bkmrk-mobile-cascade-modif
https://wiki.cloud.akvo.org/books/rtmis/page/mobile-application#bkmrk-mobile-cascade-modif


This new question type is similar to an option-type question, but instead of custom options created
by the user, the options will be populated from the "data-point-name" field in the data table (refer
to: https://wiki.cloud.akvo.org/books/rtmis/page/low-level-design#bkmrk-database-overviews).

Requirements:

New API for Web-form which retrieve list of data-point based on the user token to filter the
data-point list
SQLite generation for the data-point list, the SQLite generation cycle will triggered when
data is approved.
File format for the SQLite: "/sqlite/<form_id>-<administration_id>-data.sqlite"

Parameters:

Name: type
Type: Enum
Enum Name: data_point

The "Display Only" parameter is a helper that can be used to display a question for which the
answer should not be sent to the server. The "Display Only" parameter is used to assist users in
running data calculations, dependency population, or auto-answering for other questions.

Example use case:

Q1: Do you want to update or create new data?
When the answer is "yes," Q2 and Q3 appear.
When the answer is "no," Q2 and Q3 do not appear.

Requirements:

The "Display Only" question parameter shall be defined as a feature in the
survey/questionnaire creation tool.
The primary purpose of the "Display Only" parameter is to allow the inclusion of questions
in a survey for informational or display purposes only.
The survey tool shall include appropriate error handling mechanisms to prevent "Display
Only" questions from being treated as regular questions during data processing.
This will not become a part of a bulk template, and data download

Parameters:

Name: displayOnly
Type: Boolean

New Question Parameter
Display Only

https://wiki.cloud.akvo.org/books/rtmis/page/low-level-design#bkmrk-database-overviews)


Database Migration: Question

The latest version of the questionnaire introduces a new type of question, released in akvo-react-
form v2.2.6, known as autofield. This question type necessitates a new parameter, with fn as the
object name. To accommodate this, modifications to the database are required to store this new
parameter effectively. 

Example use case:

Context: The questionnaire includes three questions related to toilet facilities in a
household, each with options categorized as "G0", "G0+", and "G1". The autofield
question aims to provide an overall outcome based on responses to these questions.
Questions:

Household Toilet Observed (Question ID: 1699422286091)
Options: "G0 No toilet" and "G1 Toilet observed"
Determines if a toilet facility is visible in the household.

Functional Toilet (Question ID: 1699423357200)
Options: "G0 Non-functional toilet", "G0+ Partly functional toilet", and "G1 Fully
functional toilet"
Assesses the functionality of the toilet facility.

Toilet Privacy (Question ID: 1699423571454)

String Function

{
  "id": 1701810579091,
  "name": "Outcome result - Functional toilet with privacy",
  "order": 4,
  "type": "autofield",
  "required": false,
  "meta": false,
  "fn": {
    "fnColor": {
      "G1": "#38A15A",
      "G0": "#DB3B3B"
    },
    "fnString": "function() {(#1699422286091.includes(\"G1\") && #1699423357200.includes(\"G1\") && 
#1699423571454.includes(\"G1\")) ? \"G1\" : \"G0\";}",
    "multiline": false
  }
}

https://wiki.cloud.akvo.org/books/rtmis/page/mobile-application#bkmrk-q%2C-r
https://github.com/akvo/akvo-react-form/releases/tag/v2.2.6
https://github.com/akvo/akvo-react-form/releases/tag/v2.2.6


Options: "G0 No toilet privacy", "G0+ Inadequate toilet privacy", and "G1 Good
toilet privacy"
Evaluates the privacy aspect of the toilet facility.

Autofield Question:
ID: 1701810579091
Type: "autofield"
Function (fnString): Evaluates the responses to the above questions and
determines the overall outcome. The function checks if all three questions have a
"G1" response. If so, the result is "G1"; otherwise, it defaults to "G0".

Use Case Scenario:
A household is being surveyed for toilet facilities.
The enumerator observes that there is a toilet (G1 for Question 1699422286091), it
is fully functional (G1 for Question 1699423357200), and it provides good privacy
(G1 for Question 1699423571454).
The autofield function evaluates these responses and, since all are "G1", the overall
outcome is "G1".
The autofield question then displays this result, using the color associated with "G1"
(#38A15A - a shade of green) as defined in  fnColor .

Outcome: The autofield question effectively summarizes the overall status of the
household's toilet facilities based on specific criteria, providing a quick and visually
intuitive result. This helps in making informed decisions or assessments based on the
survey data.

Requirements:

fnColor: Maps result values to specific color codes in hex format. Each color must
correspond to a potential result of the fnString  function.
fnString: A JavaScript function that evaluates conditions based on responses to other
questions (identified by their question_id, referenced with a hashtag #) and returns a
result.
multiline: A boolean value indicating whether the result should be displayed in a single
line (false) or multiple lines (true).
Integration with Questionnaire Logic: The fn  parameter must integrate with the
overall questionnaire logic, dynamically evaluating and displaying results based on
responses.
User Interface Display: The result and its associated color, as defined in fnColor , should
be clearly displayed in the questionnaire interface.
Validation and Error Handling: Ensure fnString  is a valid function and fnColor  contains
valid color codes. The system should handle errors effectively if the function fails or
returns an undefined color code.

Parameters:

Name: fn
Type: Object



Database Migration: Question

The "Meta UUID" parameter is a useful utility that generates a universally unique identifier (UUID)
for each data point, allowing you to easily track and distinguish individual records within your
dataset. This unique identifier can be used as a parent datapoint when performing data monitoring,
grade claims, and certification

Example use case:

Requirements:

The "Meta UUID" question parameter shall be defined as a feature in the
survey/questionnaire creation tool.
The "Meta UUID" UUID allows for efficient lookup, linking, and querying of specific
datapoints, ensuring that identical data records can be uniquely identified and managed.

Parameters:

Name: meta_uuid
Type: Boolean

Database Migration: Question

Example use case:

Meta UUID

{
  "id": 1702914803732,
  "order": 4,
  "name": "hh_code",
  "label": "Household Code",
  "type": "text",
  "required": true,
  "meta": false,
  "meta_uuid": true
}

Hidden

{
  "id": 1716283800,
  "order": 34,

https://wiki.cloud.akvo.org/books/rtmis/page/mobile-application#bkmrk-q%2C-r
https://wiki.cloud.akvo.org/books/rtmis/page/mobile-application#bkmrk-q%2C-r


Parameters:

Name: hidden
Type: Object

Database Migration: Question

Example use case:

  "name": "community_outcomes_achieved",
  "label": "Have all of the community outcomes for this grade been achieved?",
  "type": "option",
  "required": true,
  "meta": false,
  "options": [
    {
      "order": 1,
      "label": "Yes",
      "value": "yes",
      "color": "green"
    },
    {
      "order": 2,
      "label": "No",
      "value": "no",
      "color": "red"
    }
  ],
  "hidden": {
    "submission_type": ["registration", "monitoring", "certification"]
  }
}

Disabled

{
  "id": 1699354849382,
  "order": 2,
  "name": "hh_location",

https://wiki.cloud.akvo.org/books/rtmis/page/mobile-application#bkmrk-q%2C-r


Parameters:

Name: disabled
Type: Object

Database Migration: Question

Example use case:

  "label": "What is the location of the household?",
  "short_label": null,
  "type": "administration",
  "required": true,
  "meta": false,
  "fn": null,
  "disabled": {
    "submission_type": ["monitoring", "verification", "certification"]
  }
}

Default value

{
  "id": 1699354220734,
  "order": 1,
  "name": "reg_or_update",
  "label": "New household registration or Monitoring update?",
  "type": "option",
  "required": true,
  "meta": false,
  "options": [
    {
      "order": 1,
      "label": "New",
      "value": "new"
    },
    {
      "order": 2,
      "label": "Update",
      "value": "update"
    }

https://wiki.cloud.akvo.org/books/rtmis/page/mobile-application#bkmrk-q%2C-r


Parameters:

Name: default_value
Type: Object

Database Migration: Question

Example use case:

  ],
  "default_value": {
    "submission_type": {
      "monitoring": "update",
      "registration": "new",
    }
  },
  "dependency": null,
  "fn": null
}

Pre-filled

{
  "id": 1699417958748,
  "order": 1,
  "name": "resp_position",
  "label": "Household respondent position in household",
  "type": "option",
  "required": true,
  "meta": false,
  "options": [
    {
      "order": 1,
      "label": "Household head",
      "value": "hh_head"
    },
    {
      "order": 2,
      "label": "Spouse of household head",

https://wiki.cloud.akvo.org/books/rtmis/page/mobile-application#bkmrk-q%2C-r


Parameters:

Name: pre
Type: Object

Database Migration: Question

Additionally, new functionalities have been introduced to enhance the visual appeal of options in 
option and multiple_option types of questions by incorporating color. To support this feature, a
new column named color needs to be migrated into the option table.

Database Migration: Option

Step 1: Access the "Mobile Data Collectors" Section

      "value": "spouse_of_hh_head"
    },
    {
      "order": 3,
      "label": "Parent of household head",
      "value": "parent_of_hh_head"
    }
  ],
  "pre": {
    "reg_or_update": {
      "new": ["hh_head"]
    }
  }
}

New Option Parameter
Option Color

Front-end
User Stories
1. Adding an Assignment

https://wiki.cloud.akvo.org/books/rtmis/page/mobile-application#bkmrk-q%2C-r
https://wiki.cloud.akvo.org/books/rtmis/page/mobile-application#bkmrk-2.-option-table


Action: Navigate to the dedicated "Mobile Data Collectors" section within the RTMIS front-
end.
Purpose: This section is specifically designed for managing mobile data collector
assignments.

Step 2: Initiate Adding a Mobile Data Collector

Action: Use the "Add Mobile Data Collector" feature available in this section.
Purpose: This feature allows the Data Entry Staff to start the process of creating a new
assignment for mobile data collectors.

Step 3: Fill in the Assignment Details Form

Action: Complete the user-friendly form provided for assignment details.
Details to Include:

Name of the Assignment: Provide a descriptive name or title for the assignment.
Level: Choose level for Mobile Assignment (not for sending to back-end)
Administration Selection: Choose the relevant administrative area for the
assignment (one or multiple).
Form(s) Selection: Select the specific form(s) that the mobile data collector will
use for data collection.

Step 4: Create the Assignment

Action: After filling in all the necessary details, click the "create" button.
Backend Processing: On clicking "create," the RTMIS backend processes the provided
information.

Step 5: Receive the Assignment Pass-code

Outcome: Once the backend processing is complete, a unique 6-digit alphanumeric code
is generated.
Purpose: This pass-code is used for mobile authentication by the enumerators or data
collectors in the field.
Note: When Data Entry Staff add a new assignment for Mobile Data Collectors in the
RTMIS system, it's important to note the following:

Informing the Enumerator: The Data Entry Staff who adds Mobile Data Collectors
should personally inform the Enumerator about the assignment. This communication
is typically done during a training session or a designated briefing.
Pass-code Availability: The unique 6-digit alphanumeric pass-code generated for
each assignment will also be displayed in the Mobile User list within the RTMIS
system.
Responsibility of Communication: It is the responsibility of the Data Entry Staff to
ensure that Enumerators are aware of and understand the pass-code and its usage.

2. Submitting a Pending Batch of Data



Step 1: Data Collection by Mobile Data Collector/Enumerator

Action: As a Mobile Data Collector/Enumerator, I collect data in the field using the RTMIS
mobile application.
Outcome: After data collection, I submit the data. The data is uploaded and appears as a
pending submission.

Step 2: Pending Submission Review by Data Entry User

Action: As a Data Entry User, I review the pending submissions that have come in from
various Mobile Data Collectors/Enumerators.
Visibility: The submissions are clearly marked as pending and are queued for batch
processing.

Step 3: Batch Creation for Submission

Action: I create a batch of the pending data for submission.
Details: While creating the batch, I ensure that the name of the submitter (Mobile Data
Collector/Enumerator) is recorded for each data entry. This is a new feature in the
updated RTMIS system.

Step 4: Data Submission

Action: I submit the batch of data for processing.
New Feature: Unlike the previous system, the RTMIS now records the name of the actual
submitter (Mobile Data Collector/Enumerator) rather than the Data Entry User.

Step 5: Data Approval Process (Unchanged):

Note: The rest of the data approval process remains unchanged. The submitted data
undergoes the usual verification and approval workflow as per the existing RTMIS
protocols.

1.a. When there's no user in the users database:

Open App
Login with the user pass-code

Mobile
User Stories
1. User Authentication



Store token (response from server) to users table and state
Fill the information about the user in users database from the server response. Unlike the
previous version, in this version, the logged in user CANNOT fill the user information
themselves.
Form list opened

1.b. When user is available in the users database:

Open App
User selection page opened: on the bottom of the page, there should be a button for
adding new user
User click add new user
Login with the user pass-code
Store token (response from server) to users table and state
Fill the information about the user in users database from the server response. Unlike the
previous version, in this version, the logged in user CANNOT fill the user information
themselves.
Form list opened

Open App
User selection page opened
Select the user from user list
Press download data
Server will give the list of data-points which can be downloaded

[{
  "id": 1,
  "updated_at": 1701070914356
},{
  "id": 2,
  "updated_at": 1701070914356
}]

Mobile download the data-points 1 by 1 (queue) and store it to datapoints database
Before download, check if the datapointId is exist in the datapoints database
And compare:

If updated_at > createdAt (in datapoints table): Replace the datapoint
If updated_at < createdAt (in datapoints table): Don't download

User will get notified when:
server send error response
download is finished

2. Download Data-points (for monitoring)



Table name: forms

Column Name Type Example

id INTEGER (PRIMARY KEY) 1

userId INTEGER 1

formId INTEGER 453743523

version VARCHAR(255) "1.0.1"

latest TINYINT 1

name VARCHAR(255) 'Household'

json TEXT See: Example JSON Form

createdAt DATETIME new Date().toISOString()

Changes:

Add userId column to (from users database), so every form has owner.

Table name: users

Column Name Type Example

id INTEGER (PRIMARY KEY) 1

active TINYINT 1 (default: 0)

name INTEGER 1

password TEXT crypto

token TEXT token

certifications TEXT jsonb (administration)

lastSyncedAt DATETIME new Date().toISOString()

Changes:

Mobile Database Modifications
1. Form Database

2. User Database

https://docs.expo.dev/versions/latest/sdk/crypto/


Add token column to store (token from authentication response)
Add certifications column table to store the certification assignments for users to
complete the Grade Certification form.
Add lastSycedAt column table to store the timestamp of the user's last sync.

Table name: datapoints

Column Name Type Example

id INTEGER (PRIMARY KEY) 1

form INTEGER 1 (represent id in forms table, NOT
formId)

user INTEGER 1 (represent id in users table)

submitter TEXT 'John'

name VARCHAR(255) 'John - St. Maria School - 0816735922'

submitted TINYINT 1

duration REAL 45.5 (in Minutes)

createdAt DATETIME new Date().toISOString()

submittedAt DATETIME new Date().toISOString()

syncedAt DATETIME new Date().toISOString()

json TEXT '{"question_id": "value"}'

submission_type INTEGER 1 (represents the enum value of the
submission type i.e. registration)

uuid VARCHAR(191) Crypto.randomUUID()

Changes:

user should be NULLABLE when form submission data is synced from RTMIS database
sync
Add submitter column
Add submission_type column

3. Form Submission / Datapoints Database

https://wiki.cloud.akvo.org/link/68#bkmrk-grade-claim-support
https://github.com/akvo/rtmis/blob/main/app/src/lib/constants.js#L13-L18


Add  uuid column

The updated Mobile App Development introduces a significant change in handling cascade drop-
down options, particularly in how multiple parent_ids are managed. This change affects the way
options are displayed and selected in the cascade type of questions. Here's a detailed explanation
of the new functionality:

Previous Functionality

Single parent_id: Initially, the cascade drop-down supported only a single parent_id.
Children Display: The parent_id would query the SQLite database to display its children
levels as options in the cascade drop-down.

Example:

Updated Functionality with Multiple Parent Ids

Array of parent_ids: The new system supports an array of parent_ids, allowing for more
complex cascade structures.
First Cascade Level: The parent_id array itself becomes the first level of the cascade to
select from.

Example:

1. Single parent_id in Array:
If the parent_id array contains only one administration_id, the first cascade option
should automatically display the children of this single parent_id .

Mobile Cascade Modification

Updated Functionality

"source": {
  "file": "cascade-296940912-v2.sqlite",
  "parent_id": 273
},

"source": {
  "file": "cascade-296940912-v2.sqlite",
  "parent_id": [273]
},

Handling Different Scenarios



Example: "parent_id": [273]  would directly show the children of 273  as the cascade
options.

2. Multiple parent_ids in Array:
If the parent_id array contains multiple administration_ids, the first cascade level will
allow selection among these parent_id s.
Example: "parent_id": [273, 123]  means the first cascade level will have options to
select either 273  or 123 .

3. Single parent_id  Without Children:
In a scenario where the parent_id  array has one administration_id  and this
administration  does not have any children, the app should automatically select this
parent_id  as the value by default.
Example: If 273  has no children, it becomes the default selected value

To ensure that the mobile app is up-to-date with the latest information from the server, users can
synchronize data points with a simple process. This ensures that all forms, data points, and master
data are current and accurate.

Step-by-Step Process:

1. Initiate Sync: The mobile user can easily initiate the synchronization process by clicking
the "Sync Datapoint" button on the Mobile app's Home screen.

Data Synchronization

Syncing Data Points

https://wiki.cloud.akvo.org/uploads/images/gallery/2024-06/P0yKqjORDjZ3nwnw-rtmis-sycing-fix.png


2. Request to Backend: When the user clicks "Sync Datapoint", the app sends a request to
the backend server to retrieve three main categories of data:

Form Updates: Retrieves the current form assignments for the mobile user,
including any updates indicated by form versions. This ensures the user is aware of
any changes made to the forms they use.
Data-point List: Obtains the latest routine data based on the mobile user’s form
assignments. This includes all relevant and recent data points necessary for the
user's tasks.
Cascades: Retrieves the latest master data, such as administration details,
organization information, and entity lists. This data is critical for aligning the app
with real-world conditions and reflecting any additions, updates, or removals.

3. Completion of Sync Process: Once the synchronization process is complete, the mobile
user can access the updated data. They can then navigate to the desired form with all the
latest information available.

Here is the following JSON response from data-point list API:

Data-point List API

{
  "current": 1,
  "total": 7,
  "total_page": 1,
  "data": [
    {
      "id": 11,
      "form_id": 1699353915355,
      "name": "DATA #1",
      "administration_id": 57443,
      "url": "https://rtmis.akvotest.org/b4b00592-b949-4424-b4ba-448a0d410ecf.json",
      "last_updated": "2024-05-30T04:31:58.539349Z"
    }
  ]
}

The url field in the data array will contain a URL to the JSON file that the mobile app will
download as a data-point. This JSON URL is a direct link to a static file and is not generated
by the back-end API, allowing for high traffic downloads.

Data-point JSON



After obtaining all the JSON URLs asynchronously, the mobile app will fetch the following JSON
schema and store it in the mobile database:

By following this process, mobile users can maintain a high level of productivity and accuracy in
their tasks, leveraging the most current data available from the server.

{
  "id": 21,
  "datapoint_name": "Testing Data County",
  "submission_type": 1,
  "administration": 2,
  "uuid": "025b218b-d80a-454f-8d69-8eef812edc82",
  "geolocation": [
    6.2088,
    106.8456
  ],
  "answers": {
    "101": "Jane",
    "102": [
      "Male"
    ],
    "103": 31208200175,
    "104": 2,
    "105": [
      6.2088,
      106.8456
    ],
    "106": [
      "Parent",
      "Children"
    ],
    "109": 2.5
  }
}

Monitoring Support



In this version of RTMIS mobile, we introduce monitoring support for data-points. This monitoring is
similar to a normal submission but includes previous answers. The form's shape will depend on the
submission_type equal to 2 (enum value for monitoring) in the question-level object. Users will
only answer questions that have a monitoring flag in the question. When synced to the server, it
will be treated as the same data-point, except they will have the same meta UUID as their parent
data-point.

The following table represents the schema for storing monitoring data-points:

Column Name Type Example

id INTEGER (PRIMARY KEY) 1

formId INTEGER 1 (represent id in forms table, NOT
formId)

name VARCHAR(255) 'Testing Data County'

administrationId TINYINT 1

uuid VARCHAR(255) 025b218b-d80a-454f-8d69-
8eef812edc82

syncedAt DATETIME new Date().toISOString()

json TEXT '{"question_id": "value"}'

Storing the Monitoring Data-point

https://wiki.cloud.akvo.org/books/rtmis/page/mobile-application#bkmrk-1.-data-point-table


The Grade Claim feature within the mobile app is designed to streamline the verification and
certification of grades. Below is a detailed description of how this feature operates and its
dependencies.

The Grade Claim feature has two submission types:

1. Verification: Utilized through the Grade Claim form.
2. Certification: Utilized through the Grade Certification form.

Example Form Configuration

Submission Type Dependency:
The availability of the Grade Claim feature is dependent on the submission type
definitions at the form level.
If verification  or certification  submission types are defined in the form, the
corresponding button will appear on the mobile app's Manage Form screen.

Approval Process:
Neither the Grade Claim form nor the Grade Certification form requires an approval
process, simplifying the workflow for users.

Grade Claim Support

Overview

Feature Dependencies and Behavior

https://wiki.cloud.akvo.org/uploads/images/gallery/2024-06/Z0ylMDklSZ87QXpI-rtmis-monitoring-support.png
https://github.com/akvo/rtmis/blob/main/backend/source/forms/1699354006503.prod.json#L10-L15


Certification Assignment Requirement:
The Grade Certification process requires a certification assignment, which is
managed by sub-county users via the dashboard.
If a certification  submission type exists but the mobile user does not have an
assignment, the certification button will not be displayed in the app.

UUID Requirement:
The Grade Claim feature also requires a UUID to link the grade claim or certification
to the parent data-point. This ensures accurate data tracking and association.

1. Initiate Grade Claim:
Navigate to the Manage Form screen in the mobile app.
If verification  or certification  submission types are available, the respective buttons
will be visible.

2. Complete the Form:
Select the appropriate form (Grade Claim or Grade Certification) based on the
submission type.
Fill out the necessary information and submit the form.

3. No Approval Needed:
Once submitted, the forms do not require an approval process, allowing for
immediate processing.

4. Certification Assignments:
Ensure that certification assignments are managed via the dashboard by sub-county
users to enable the certification feature on the mobile app.

5. UUID Linking:
Ensure that each submission is linked with the parent data-point using the provided
UUID to maintain data integrity.

By following this documentation, users can effectively utilize the Grade Claim feature, ensuring a
smooth and efficient workflow for verifying and certifying grades.

How to Use the Grade Claim Feature

Revision #68
Created 20 November 2023 05:56:33 by Deden Bangkit
Updated 14 June 2024 08:42:08 by Iwan Firmawan


