
The Kenya Rural Urban Sanitation and Hygiene (RUSH) platform is an advanced and comprehensive
real-time monitoring and information system owned by the Ministry of Health in Kenya. This
platform is designed to streamline and enhance the management of sanitation and hygiene data at
both county and national levels.

One of the notable capabilities of the RUSH platform is its ability to handle large amounts of data
efficiently. It supports Excel bulk upload, allowing users to upload data in bulk from Excel
spreadsheets, which can significantly expedite the data entry process. Additionally, the platform
features a web-form batch submission functionality, enabling users to submit multiple data entries
through a user-friendly web-based interface.

To ensure data accuracy and reliability, the RUSH platform incorporates a data review and approval
hierarchy between administrative levels. This means that data entered into the system undergoes
a rigorous review process, where it is checked and approved by designated personnel at various
administrative levels. This hierarchical approach ensures that data is thoroughly reviewed and
validated before being utilised for analysis and decision-making.

Another significant aspect of the RUSH platform is its visualization capabilities. The platform follows
the Joint Monitoring Program (JMP) standard and the RUSH (Rural Urban Sanitation) standard when
presenting data visually. By adhering to these standards, the platform ensures consistency and
comparability in data visualization across different geographical areas and time periods. The
visualizations generated by the platform help in understanding trends, patterns, and gaps in
sanitation and hygiene metrics, providing valuable insights for policymakers, stakeholders, and
researchers.

The purpose of the Kenya Rural Urban Sanitation and Hygiene (RUSH) platform is to support
effective monitoring, management, and improvement of sanitation and hygiene practices in Kenya.
It serves as a comprehensive information system owned by the Ministry of Health, aiming to

Low Level Design

Introduction
About RUSH

The purpose of RUSH Platform

https://washdata.org/how-we-work/about-jmp

address the challenges and gaps in sanitation and hygiene by providing reliable data, analysis, and
visualization tools.

1. Data Collection and Aggregation: The RUSH platform serves as a centralised
repository for collecting and aggregating both quantitative and qualitative data related to
sanitation and hygiene practices. It allows for data collection at the county and national
levels, ensuring comprehensive coverage and representation of diverse geographical
areas.

2. Real-Time Monitoring: The platform operates in real-time, enabling timely monitoring of
sanitation and hygiene indicators. This real-time monitoring helps identify emerging
trends, gaps, and challenges, allowing for prompt intervention and decision-making.

3. Data Analysis and Insights: The RUSH platform facilitates data analysis, allowing
policymakers and stakeholders to gain valuable insights into the state of sanitation and
hygiene practices across different regions and demographics. By analising the collected
data, trends, patterns, and areas of improvement can be identified, contributing to
evidence-based decision-making and targeted interventions.

4. Reporting and Visualization: The platform enables the generation of reports and
visualizations based on the collected data. The reports provide a comprehensive overview
of the sanitation and hygiene situation, highlighting key indicators, challenges, and
progress. The visualizations, following the JMP and RUSH standards, make complex data
easily understandable, aiding in communication and knowledge dissemination.

5. Decision Support: The RUSH platform acts as a decision support system, providing
policymakers, health officials, and other stakeholders with the necessary information to
formulate policies, design interventions, and allocate resources effectively. The data-
driven insights and visualizations empower decision-makers to prioritize areas for
improvement, target resources where they are most needed, and track progress over
time.

6. Collaboration and Accountability: The platform enhances collaboration between
different administrative levels and stakeholders involved in sanitation and hygiene
management. It establishes a data review and approval hierarchy, ensuring the accuracy
and reliability of data. By promoting transparency and accountability, the platform
facilitates coordinated efforts towards achieving national and international targets related
to sanitation and hygiene.

7. Continuous Improvement: The RUSH platform can be continually updated and
enhanced to align with evolving needs and priorities. As new data sources, indicators, or
best practices emerge, the platform can be adapted to incorporate these changes,
ensuring that it remains a relevant and effective tool for monitoring and managing
sanitation and hygiene in Kenya.

By leveraging technology and real-time data, the platform aims to contribute to better health
outcomes, improved living conditions, and sustainable development in both rural and urban areas
of the country.

Functional Overview

The Kenya Rural Urban Sanitation and Hygiene (RUSH) platform is a comprehensive real-time
monitoring and information system owned by the Ministry of Health. It serves as a centralized
platform for capturing, analising, and visualizing sanitation and hygiene data at the national,
county, sub-county, and ward levels. The platform provides various functionalities to facilitate data
collection, analysis, reporting, and visualization, empowering decision-makers with timely and
accurate information.

The RUSH platform promotes collaboration and accountability by fostering engagement between
different administrative levels and stakeholders involved in sanitation and hygiene management. It
acts as a decision support system, providing policymakers and health officials with the necessary
information to formulate policies, design interventions, and allocate resources effectively.
Additionally, the platform encourages continuous improvement by being adaptable to changing
needs and priorities, accommodating new data sources, indicators, and best practices.

To ensure data accuracy and reliability, the RUSH platform incorporates a robust data review and
approval hierarchy between administrative levels. This hierarchical approach guarantees that data
is thoroughly reviewed, validated, and approved by designated personnel, enhancing the credibility
and quality of the information within the system.

The RUSH platform enables users to input data through user-friendly forms, allowing for
efficient data collection.
Users can make use of features like Excel bulk upload to upload a large amount of data in
a structured manner, facilitating data entry and saving time.
The platform supports data validation, ensuring the accuracy and integrity of the collected
data.
Data entries are associated with the respective administrative levels, allowing for easy
filtering and analysis based on administrative geographical hierarchy.

The RUSH platform incorporates an approval hierarchy system to ensure data accuracy
and control.
Administrators at each level have the authority to approve or reject data entries based on
their jurisdiction.
Approvers can review and make necessary edits or corrections to the data before
approving or rejecting it.
The approval hierarchy helps maintain data quality and integrity by involving multiple
levels of review and verification.

the RUSH platform's functional overview highlights its role as a comprehensive system for
data collection, analysis, reporting, and visualization.

Data Collection and Management

Approval Hierarchy

User Roles and Access Control

The RUSH platform implements a role-based access control system to manage user
permissions and access levels.
Users are assigned roles based on their responsibilities and administrative levels.
Each role has specific page access permissions, allowing users to perform relevant tasks
within their assigned administrative level.
The platform ensures secure access and proper segregation of duties by granting
appropriate permissions to users based on their roles.

The platform provides visualisations following the Joint Monitoring Programme (JMP) and
RUSH standards.
Visualisations include charts, aggregates, tables, and advanced filters.
These visualisations allow users to gain insights into the collected data, track trends, and
generate reports.
Reports can be generated based on selected criteria, such as administrative level, time
period, and specific indicators.
The platform offers export functionalities, allowing users to download reports or
visualisations for further analysis or sharing.

The design of the RUSH platform incorporates several key considerations to ensure its
effectiveness in addressing the challenges and requirements of managing sanitation and hygiene
practices in Kenya. Some of the design considerations of the RUSH platform include:

1. Data Aggregation and Integration: The RUSH platform is designed to aggregate both
quantitative and qualitative data from various sources and administrative levels. It
integrates data from county and national levels, allowing for comprehensive and unified
data management. This design consideration enables a holistic view of sanitation and
hygiene practices across different geographical areas.

2. Real-time Monitoring and Reporting: The platform emphasise real-time monitoring of
sanitation and hygiene indicators. It provides timely updates on data collection, analysis,
and reporting, enabling prompt interventions and decision-making. This design
consideration ensures that stakeholders have access to the most up-to-date information
to address emerging challenges effectively.

3. User-Friendly Interface: The RUSH platform features a user-friendly interface that
enhances usability and accessibility. It is designed with intuitive navigation, clear visual
cues, and streamlined workflows. This consideration enables users of varying technical
backgrounds to easily navigate the platform and perform tasks efficiently.

4. Role-Based Access and Permissions: The platform employs role-based access control,
assigning different levels of access and permissions based on user roles and
administrative levels. This design consideration ensures data security, privacy, and
appropriate data management by allowing users to access only the functionalities and

Visualisations and Reports

Design Considerations

data relevant to their roles and responsibilities.
5. Data Validation and Approval Hierarchy: The RUSH platform incorporates a data

validation process and approval hierarchy to ensure data accuracy and reliability.
Appropriate users at different administrative levels review, validate, and approve the
data, maintaining data integrity throughout the platform.

6. Standardized Visualizations: The platform follows standardized visualization practices,
including the Joint Monitoring Programme (JMP) standard and the RUSH standard. This
design consideration ensures consistency and comparability in data visualizations,
allowing for meaningful insights and effective communication of information across
different regions and time periods.

7. Scalability and Adaptability: The design of the RUSH platform takes into account its
scalability and adaptability. It is built to accommodate a growing volume of data and
changing requirements over time. This consideration ensures that the platform can evolve
and meet the changing needs of sanitation and hygiene management in Kenya.

8. Integration of Existing Systems: The design of the RUSH platform takes into
consideration the integration of existing systems and data sources. It aims to leverage
and integrate with other relevant platforms, databases, and information systems to
facilitate data exchange, interoperability, and collaboration.

These design considerations are aimed at creating a robust, user-friendly, and scalable platform
that effectively supports data management, analysis, reporting, and decision-making for improved
sanitation and hygiene practices in Kenya.

The RUSH platform offers a range of user roles, each with its own set of capabilities and
responsibilities. The Super Admin holds the highest level of administrative authority at the national
level and oversees the overall operation of the platform. County Admins have the responsibility of
managing the platform within their respective counties, while Data Approvers review and approve
data at the sub-county level. Data Entry Staff are responsible for collecting data at the ward level,
ensuring that information is captured accurately at the grassroots level. Additionally, Institutional
Users have access to view and download data from all counties, facilitating research and analysis.

Architecture
Class Diagrams

Class Functions
User Roles

These user roles, aligned with administrative levels, contribute to the effective management of
sanitation and hygiene data. By assigning specific roles and access privileges, the RUSH platform
ensures that data is collected, validated, and utilised appropriately. This promotes accountability,
collaboration, and evidence-based decision-making, leading to improved sanitation and hygiene
practices throughout Kenya.

In the following sections is the detailed descriptions of each user role, outlining their specific
capabilities, page access, administration levels, and responsibilities. Understanding the functions
and responsibilities of these user roles is vital to effectively utilising the RUSH platform and
harnessing its full potential for transforming sanitation and hygiene practices in Kenya.

1. Super Admin: The Super Admin holds the highest level of administrative authority in the
RUSH platform at the national level. They have access to all functionalities and pages,
including user management, data control, visualisation, questionnaires, approvals, and
reports. As the overall national administrator, their responsibilities encompass assigning
roles to County Admins, managing the organisation's settings, and overseeing the
platform's operations. The Super Admin plays a crucial role in ensuring the smooth
functioning and effective utilisation of the RUSH platform nationwide.

2. County Admin: County Admins are responsible for overseeing the RUSH platform at the
county level. They possess extensive access to functionalities and pages, including user
management, data control, visualisation, questionnaires, approvals, and reports. Their
primary role involves managing and coordinating the platform's operations within their
respective counties. This includes assigning roles to Sub County RUSH Admins (Approvers)
operating at the sub-county level, who play a crucial role in data management and
approval. County Admins act as key facilitators in ensuring efficient and accurate data
collection and analysis within their counties.

3. Data Approver: Data Approvers hold the responsibility of giving final approval to the
data submitted from their respective sub-counties. Operating at the sub-county
administrative level, they possess access to functionalities and pages such as data
control, visualisation, approvals, questionnaires, and reports. Data Approvers play a
critical role in reviewing and validating data submitted by Data Entry Staff from their
areas of jurisdiction. They have the authority to edit or return data for correction, ensuring
data accuracy and reliability within their assigned sub-counties.

4. Data Entry Staff: Data Entry Staff operate at the ward administrative level and are
responsible for collecting data from the communities or villages assigned to them. They
have access to functionalities and pages related to data entry, form submissions, data
control, visualisation, and reports. Data Entry Staff play an essential role in gathering
accurate and comprehensive data at the grassroots level, ensuring that the RUSH
platform captures information directly from the targeted areas. Their diligent data
collection efforts contribute to the overall effectiveness and reliability of the sanitation
and hygiene data within the platform.

5. Institutional User: Institutional Users have access to functionalities and pages such as
profile management, visualisation, and reports. They can view and download data from all
counties within the RUSH platform. Institutional Users do not possess administrative
privileges but play a vital role in accessing and utilising the data for research, analysis,
and decision-making purposes. Their ability to access data from multiple administrative

levels ensures comprehensive insights and contributes to informed actions and
interventions in the field of sanitation and hygiene.

The administrative levels within the RUSH platform are of utmost importance as they serve as a
fundamental backbone for various components within the system. These administrative levels,
provided by the Ministry of Health, play a crucial role in user management, data organisation, and
the establishment of approval hierarchy rules. As such, this master list of administrative levels
stands as a critical component that needs to be accurately provided by the Ministry of Health.

The administrative levels serve as a key reference for assigning roles and access privileges to
users. Users are associated with specific administrative levels based on their responsibilities and
jurisdiction. The administrative levels determine the data organisation structure, allowing for
effective data aggregation, review, and approval processes. The approval hierarchy rules are
established based on these administrative levels, ensuring proper authorisation and validation of
submitted data. Additionally this allows for effective data visualisation, filtering, and analysis based
on administrative boundaries.

The administrative levels consist of distinct administrative names, level names, and unique
identifiers, allowing for easy identification and filtering of data points within the platform.

1. National: The National level represents the highest administrative level within the RUSH
platform. It encompasses the entire country of Kenya and serves as the top-level
jurisdiction for data management, coordination, and decision-making.

2. County: The County level represents the second administrative level within the RUSH
platform. It corresponds to the various counties in Kenya and acts as a primary jurisdiction
for data collection, management, and implementation of sanitation and hygiene
initiatives.

3. Sub-County: The Sub-County level represents the third administrative level within the
RUSH platform. It corresponds to the sub-county divisions within each county and serves
as a localised jurisdiction for data collection, review, and approval processes.

4. Ward: The Ward level represents the fourth administrative level within the RUSH
platform. It corresponds to the wards or smaller subdivisions within each sub-county.
Wards act as the grassroots level of data collection, ensuring that data is collected at the
most localised and community-specific level.

Here's an explanation of the models and their relationships:

1. Levels Model:
The Levels model represents the administrative levels within the RUSH platform.
Each instance of the Levels model corresponds to a specific administrative level,
such as national, county, sub-county, or ward.
The model includes fields such as name and level.
The name field stores the name or label for the administrative level, as the
explained administrative level above.

Administrative Levels

The level field stores the numerical representation of the administrative level, with
lower values indicating higher levels of administration.

2. Administration Model:
The Administration model represents administrative entities within the RUSH
platform.
Each instance of the Administration model corresponds to a specific administrative
entity, such as a county or sub-county.
The model includes fields such as parent, code, level, name, and path.
The parent field establishes a foreign key relationship with the Administration
model itself, representing the parent administrative entity.
The code field stores a unique identifier or code for the administrative entity that
comes from shapefile.
The level field establishes a foreign key relationship with the Levels model,
indicating the administrative level associated with the entity.
The name field stores the name or label for the administrative entity.
The path field stores the hierarchical path or location of the administrative entity
within the administrative structure.

Functionality:

The Levels model allows for the definition and categorisation of different administrative
levels within the RUSH platform.
The Administration model represents specific administrative entities, such as counties or
sub-counties, and their relationships with higher-level entities.
The parent field enables the establishment of hierarchical relationships between
administrative entities, creating a structure that reflects the administrative hierarchy in
the system.
The level field associates each administrative entity with a specific administrative level,
providing a standardised way to categorise and organise entities based on their level.
The code field allows for unique identification or labeling of administrative entities,
facilitating easy referencing and searchability.
The name field stores the name or label of each administrative entity, providing a human-
readable identifier for easy identification.
The path field stores the hierarchical path or location of an administrative entity within the
administrative structure, aiding in navigation and hierarchical querying.

Forms play a vital role in the RUSH platform, serving as a fundamental component for collecting
data related to sanitation and hygiene practices. They are designed to capture specific information
necessary for monitoring and evaluating sanitation initiatives at various administrative levels.

Importance of Forms:

1. Data Collection: Forms are designed to capture relevant data regarding sanitation and
hygiene practices. They ensure that standardised information is collected consistently

Forms

across different administrative levels.
2. Information Management: Forms enable the organised storage and retrieval of data

related to sanitation and hygiene practices. The collected data can be accessed, analised,
and visualised for informed decision-making and policy formulation.

3. Monitoring and Evaluation: By collecting data through forms, the RUSH platform
facilitates ongoing monitoring and evaluation of sanitation initiatives. This helps measure
progress, identify challenges, and make data-driven decisions to improve sanitation and
hygiene practices.

4. Data Consistency and Standardisation: With questionnaire definitions and question
attributes, forms ensure consistency and standardisation in data collection. This promotes
reliable analysis and comparison of data across different regions and time periods.

5. Approval Workflow: Forms incorporate approval rules and assignments, allowing
designated administrators to review and approve data submitted through the platform.
This ensures data quality and compliance with established standards.

6. User Assignments: The platform assigns specific forms to individual users, enabling
targeted data collection responsibilities. This streamlines the data collection process and
ensures accountability.

7. Integration with Other Components: Forms are integrated with other platform
components such as question groups, question attributes, and options. This enhances the
flexibility and customisation of data collection based on specific requirements.

Questions and Question Groups within Forms

Questions and question groups are essential components that contribute to the structured
organisation and systematic data collection within forms. These components are interconnected
and play a significant role in capturing information related to sanitation and hygiene practices.

1. Forms Model
The Forms represents individual forms within the RUSH platform.
Each form has a unique name , version , uuid , and type ("County" or "National").
The model establishes relationships with other models to facilitate data approval,
question grouping, and user assignments.
Forms serve as the container for questions and question groups, defining the overall
structure and context for data collection.
Each form is associated with specific questions and question groups that collectively
capture data for a particular purpose, such as county-level or national-level
sanitation assessments.

2. Question Groups Model
The Question Group represents a grouping mechanism for related questions within a
form.
Question groups are an organisational unit within a form that groups together
questions with a common theme or topic.
Each question group is associated with a specific form and has a unique name.
The order of question groups determines the sequence or presentation of these
groups within the form.

3. Questions Model

The Questions model represents individual questions within a form.
Questions are associated with a specific form and question group, defining their
position and relationship within the form's structure.
Each question captures specific data points related to sanitation and hygiene
practices.
Questions can have various types (e.g., administration (cascade), text,
number, option, multiple option, geo, date) and properties (e.g., required,
rule, dependency, and api for cascade type of question).
The properties of questions are defined within the context of the question group and
form they belong to.

the Form Data and Answers models work together to capture, store, and associate form data and
the corresponding answers within the RUSH platform.

1. Form Data Model
When a user fills out a form in the RUSH platform, the entered data is captured and
stored as form data.
The Form Data model represents a specific data entry for a form within the platform.
Each instance of the Form Data model corresponds to a unique submission of a form
by a user.
The Form Data model includes information such as the form name, version,
administration level, geographical data, and timestamps for creation and
updates.
By storing form data, the RUSH platform maintains a record of each user's
submission and enables the tracking of changes and updates over time.
The form data is associated with the relevant form through a foreign key
relationship, allowing easy retrieval and analysis of the submitted information.

2. Answers Model
Within each form data entry, the user provides answers to the questions included in
the form.
The Answers model represents individual answers for specific questions within a
form data entry.
Each answer in the Answers model is associated with a particular question and the
corresponding form data entry.
The model includes fields such as the answer value, name, options (if applicable),
and timestamps for creation and updates.
By storing answers as separate instances, the RUSH platform retains the granularity
of data, allowing for detailed analysis of each answer within the form data.
The answers are linked to the form data and questions through foreign key
relationships, facilitating easy retrieval and analysis of specific answers within a

Cascade type of question has different api call properties for each users depends on the
access of the administrative of so users can only fill the form within their administrative area

Form Data

given form data entry.

Functionality:

When a user submits a form, the entered data is processed and saved as a new instance
of the Form Data model, representing a unique data entry for that form.
The associated answers for each question in the form are stored as instances of the
Answers model, linked to the corresponding form data entry and question.
The form data and answers are stored in the database, providing a comprehensive record
of the submitted information.
This stored data can be accessed, retrieved, and analised for various purposes, such as
monitoring and evaluating sanitation and hygiene practices, generating reports, and
informing decision-making processes.
The relationship between form data and answers allows for flexible querying and analysis,
enabling the platform to generate insights and visualise trends based on the collected
data.

Class Name Class Notes

Organisation Organisation(id, name)

OrganisationAttribute OrganisationAttribute(id, organisation, type)

SystemUser SystemUser(id, password, last_login, is_superuser, email, date_joined, first_name,
last_name, phone_number, designation, trained, updated, deleted_at, organisation)

Levels Levels(id, name, level)

Administration Administration(id, parent, code, level, name, path)

Access Access(id, user, administration, role)

Forms Forms(id, name, version, uuid, type)

FormApprovalRule FormApprovalRule(id, form, administration)

FormApprovalAssignment FormApprovalAssignment(id, form, administration, user, updated)

QuestionGroup QuestionGroup(id, form, name, order)

Questions Questions(id, form, question_group, order, text, name, type, meta, required, rule,
dependency, api, extra)

Class Overview

QuestionOptions QuestionOptions(id, question, order, code, name, other)

UserForms UserForms(id, user, form)

QuestionAttribute QuestionAttribute(id, name, question, attribute, options)

ViewJMPCriteria ViewJMPCriteria(id, form, name, criteria, level, score)

FormData FormData(id, name, form, administration, geo, created_by, updated_by, created,
updated)

PendingDataBatch PendingDataBatch(id, form, administration, user, name, uuid, file, approved, created,
updated)

PendingDataBatchComments PendingDataBatchComments(id, batch, user, comment, created)

PendingFormData PendingFormData(id, name, form, data, administration, geo, batch, created_by,
updated_by, created, updated)

PendingDataApproval PendingDataApproval(id, batch, user, level, status)

PendingAnswers PendingAnswers(id, pending_data, question, name, value, options, created_by, created,
updated)

PendingAnswerHistory PendingAnswerHistory(id, pending_data, question, name, value, options, created_by,
created, updated)

Answers Answers(id, data, question, name, value, options, created_by, created, updated)

AnswerHistory AnswerHistory(id, data, question, name, value, options, created_by, created, updated)

ViewPendingDataApproval ViewPendingDataApproval(id, status, user, level, batch, pending_level)

ViewDataOptions ViewDataOptions(id, data, administration, form, options)

ViewOptions ViewOptions(id, data, administration, question, answer, form, options)

ViewJMPData ViewJMPData(id, data, path, form, name, level, matches, score)

ViewJMPCount ViewJMPCount(id, path, form, name, level, total)

Jobs Jobs(id, task_id, type, status, attempt, result, info, user, created, available)

DataCategory DataCategory(id, name, data, form, options)

Task Task(id, name, func, hook, args, kwargs, result, group, started, stopped, success,
attempt_count)

Success Success(id, name, func, hook, args, kwargs, result, group, started, stopped, success,
attempt_count)

Failure Failure(id, name, func, hook, args, kwargs, result, group, started, stopped, success,
attempt_count)

Schedule Schedule(id, name, func, hook, args, kwargs, schedule_type, minutes, repeats,
next_run, cron, task, cluster)

OrmQ OrmQ(id, key, payload, lock)

access

pos table column null dtype len default

1 access id NO bigint access_id_seq

2 access role NO int

3 access administration_id NO bigint

4 access user_id NO bigint

administrator

pos table column null dtype len default

1 administrator id NO bigint administrator_id_se
q

2 administrator code YES character varying 255

3 administrator name NO text

4 administrator level_id NO bigint

5 administrator parent_id YES bigint

6 administrator path YES text

answer

pos table column null dtype len default

Database Overview
Main Tables

1 answer id NO bigint answer_id_seq

2 answer name YES text

3 answer value YES double

4 answer options YES jsonb

5 answer created NO tz timestamp

6 answer updated YES tz timestamp

7 answer created_by_id NO bigint

8 answer data_id NO bigint

9 answer question_id NO bigint

answer_history

pos table column null dtype len default

1 answer_history id NO bigint answer_history_id_
seq

2 answer_history name YES text

3 answer_history value YES double

4 answer_history options YES jsonb

5 answer_history created NO tz timestamp

6 answer_history updated YES tz timestamp

7 answer_history created_by_id NO bigint

8 answer_history data_id NO bigint

9 answer_history question_id NO bigint

batch

pos table column null dtype len default

1 batch id NO bigint batch_id_seq

2 batch name NO text

3 batch uuid YES uuid

4 batch file YES character varying 200

5 batch created NO tz timestamp

6 batch updated YES tz timestamp

7 batch administration_id NO bigint

8 batch form_id NO bigint

pos table column null dtype len default

9 batch user_id NO bigint

10 batch approved NO bool

batch_comment

pos table column null dtype len default

1 batch_comment id NO bigint batch_comment_id
_seq

2 batch_comment comment NO text

3 batch_comment created NO tz timestamp

4 batch_comment batch_id NO bigint

5 batch_comment user_id NO bigint

data

pos table column null dtype len default

1 data id NO bigint data_id_seq

2 data name NO text

3 data geo YES jsonb

4 data created NO tz timestamp

5 data updated YES tz timestamp

6 data administration_id NO bigint

7 data created_by_id NO bigint

8 data form_id NO bigint

9 data updated_by_id YES bigint

form

pos table column null dtype len default

1 form id NO bigint form_id_seq

2 form name NO text

3 form version NO int

4 form uuid NO uuid

5 form type YES int

form_approval_assignment

pos table column null dtype len default

1 form_approval_assi
gnment

id NO bigint form_approval_assi
gnment_id_seq

2 form_approval_assi
gnment

updated YES tz timestamp

3 form_approval_assi
gnment

administration_id NO bigint

4 form_approval_assi
gnment

form_id NO bigint

5 form_approval_assi
gnment

user_id NO bigint

form_approval_rule

pos table column null dtype len default

1 form_approval_rule id NO bigint form_approval_rule
_id_seq

2 form_approval_rule administration_id NO bigint

3 form_approval_rule form_id NO bigint

jobs

pos table column null dtype len default

1 jobs id NO bigint jobs_id_seq

2 jobs type NO int

3 jobs status NO int

4 jobs attempt NO int

5 jobs result YES text

6 jobs info YES jsonb

7 jobs created NO tz timestamp

8 jobs available YES tz timestamp

9 jobs user_id NO bigint

10 jobs task_id YES character varying 50

levels

pos table column null dtype len default

1 levels id NO bigint levels_id_seq

pos table column null dtype len default

2 levels name NO character varying 50

3 levels level NO int

option

pos table column null dtype len default

1 option id NO bigint option_id_seq

2 option order YES bigint

3 option code YES character varying 255

4 option name NO text

5 option other NO bool

6 option question_id NO bigint

organisation

pos table column null dtype len default

1 organisation id NO bigint organisation_id_se
q

2 organisation name NO character varying 255

organisation_attribute

pos table column null dtype len default

1 organisation_attrib
ute

id NO bigint organisation_attrib
ute_id_seq

2 organisation_attrib
ute

type NO int

3 organisation_attrib
ute

organisation_id NO bigint

pending_answer

pos table column null dtype len default

1 pending_answer id NO bigint pending_answer_id
_seq

2 pending_answer name YES text

3 pending_answer value YES double

4 pending_answer options YES jsonb

pos table column null dtype len default

5 pending_answer created NO tz timestamp

6 pending_answer updated YES tz timestamp

7 pending_answer created_by_id NO bigint

8 pending_answer pending_data_id NO bigint

9 pending_answer question_id NO bigint

pending_answer_history

pos table column null dtype len default

1 pending_answer_hi
story

id NO bigint pending_answer_hi
story_id_seq

2 pending_answer_hi
story

name YES text

3 pending_answer_hi
story

value YES double

4 pending_answer_hi
story

options YES jsonb

5 pending_answer_hi
story

created NO tz timestamp

6 pending_answer_hi
story

updated YES tz timestamp

7 pending_answer_hi
story

created_by_id NO bigint

8 pending_answer_hi
story

pending_data_id NO bigint

9 pending_answer_hi
story

question_id NO bigint

pending_data

pos table column null dtype len default

1 pending_data id NO bigint pending_data_id_s
eq

2 pending_data name NO text

3 pending_data geo YES jsonb

5 pending_data created NO tz timestamp

6 pending_data administration_id NO bigint

7 pending_data created_by_id NO bigint

pos table column null dtype len default

8 pending_data data_id YES bigint

9 pending_data form_id NO bigint

11 pending_data batch_id YES bigint

12 pending_data updated YES tz timestamp

13 pending_data updated_by_id YES bigint

pending_data_approval

pos table column null dtype len default

1 pending_data_appr
oval

id NO bigint pending_data_appr
oval_id_seq

2 pending_data_appr
oval

status NO int

4 pending_data_appr
oval

user_id NO bigint

5 pending_data_appr
oval

level_id NO bigint

6 pending_data_appr
oval

batch_id NO bigint

question

pos table column null dtype len default

1 question id NO bigint question_id_seq

2 question order YES bigint

3 question text NO text

4 question name NO character varying 255

5 question type NO int

6 question meta NO bool

7 question required NO bool

8 question rule YES jsonb

9 question dependency YES jsonb

10 question form_id NO bigint

11 question question_group_id NO bigint

12 question api YES jsonb

13 question extra YES jsonb

question_attribute

pos table column null dtype len default

1 question_attribute id NO bigint question_attribute_
id_seq

2 question_attribute name YES text

3 question_attribute attribute NO int

4 question_attribute options YES jsonb

5 question_attribute question_id NO bigint

question_group

pos table column null dtype len default

1 question_group id NO bigint question_group_id_
seq

2 question_group name NO text

3 question_group form_id NO bigint

4 question_group order YES bigint

system_user

pos table column null dtype len default

1 system_user id NO bigint system_user_id_se
q

2 system_user password NO character varying 128

3 system_user last_login YES tz timestamp

4 system_user is_superuser NO bool

5 system_user email NO character varying 254

6 system_user date_joined NO tz timestamp

7 system_user first_name NO character varying 50

8 system_user last_name NO character varying 50

9 system_user designation YES character varying 50

10 system_user phone_number YES character varying 15

11 system_user updated YES tz timestamp

12 system_user deleted_at YES tz timestamp

13 system_user organisation_id YES bigint

14 system_user trained NO bool

user_form

pos table column null dtype len default

1 user_form id NO bigint user_form_id_seq

2 user_form form_id NO bigint

3 user_form user_id NO bigint

Materialized Views

Relationship Diagrams

https://wiki.cloud.akvo.org/uploads/images/gallery/2023-05/m50UssYwap5KHyMx-rtmis-main.png

To generate the relationship diagram for the RUSH platform, the dbdocs.io tool is utilized. The
process involves using the django-dbml library to generate a dbml (database markup language)
file that represents the database schema and entity relationships based on the Django models.

This dbml file is then pushed to a designated location, accessible during the CI/CD pipeline. The
dbdocs.io command-line tool is utilized to build the documentation using the dbml file. The process
typically includes specifying the location of the dbml file and providing a project name, which may
be customized based on the CI/CD environment or branch. Once the documentation is built, the
resulting relationship diagram can be accessed via the generated dbdocs.io link, which provides a
visual representation of the database schema and the relationships between entities within the
RUSH platform.

Generate DBML
https://github.com/akvo/rtmis/blob/main/backend/run-qc.sh#L22
python manage.py dbml > db.dbml

Push DBDocs
https://github.com/akvo/rtmis/blob/main/ci/build.sh#L116-L122
update_dbdocs() {
 if [["${CI_BRANCH}" == "main" || "${CI_BRANCH}" == "develop"]]; then
 npm install -g dbdocs
 # dbdocs build doc/dbml/schema.dbml --project rtmis
 dbdocs build backend/db.dbml --project "rtmis-$CI_BRANCH"
 fi
}

To view the comprehensive relationship diagram for the RUSH platform, please refer to the
following link: RUSH Platform Relationship Diagram.

Sequence Diagrams

Data Flow Diagrams

https://dbdocs.io/deden/rtmis-main

The RUSH platform incorporates a range of user interfaces designed to enhance usability,
streamline workflows, and enable efficient data management and analysis. These interfaces serve
as the gateway for users to interact with the platform's various features and functionalities. From
the login page that grants access to authenticated users, to the dashboard providing an
informative overview of key data and notifications, each interface has a specific purpose and
contributes to the seamless operation of the platform.

Login Page: The login page allows users to authenticate themselves and access the
platform using their credentials.
Dashboard: The dashboard serves as the main interface after login, providing an
overview of key information, notifications, and access to different modules and
functionalities.
Data Entry Forms: User-friendly forms are designed for data collection, enabling users
to input sanitation and hygiene data accurately and efficiently.
Form Management Interface: Administrators can create, edit, and manage forms,
including defining question groups, adding questions, setting validation rules, and

User Interface Design

https://wiki.cloud.akvo.org/uploads/images/gallery/2023-05/GH9RroBcG7yRcIdI-rtmis-data-flow.png

configuring approval workflows.
Data Review and Approval Interface: This interface allows authorised users to review,
edit, approve, or reject data entries based on their administrative levels and approval
roles.
Visualisations Interface: Each form will have a dedicated visualisation page where
users can view interactive charts, graphs, tables, and maps representing the collected
data for that specific form.
User Management Interface: Administrators can manage user accounts, roles, and
access permissions within the RUSH platform.
Approval Hierarchy Interface: This interface provides a visual representation of the
approval hierarchy, showcasing the different levels and roles involved in the data
approval process.
Data Import/Export Interface: This interface facilitates the import and export Excel
files, which can be filtered by geographical administrative area and advanced filters (filter
by specific input of the submission).
Settings and Configuration Interface: Administrators can access and modify platform
settings, including email notifications, system preferences, and integration configurations.
Notifications and Alerts Interface: Users can receive important notifications, alerts,
and reminders through the platform, ensuring timely communication and action.
User Profile Interface: Users can view their personal information, including profile
details and list of assigned forms.
Help and Support Interface: This interface provides users with access to
documentation, FAQs, tutorials, and support resources to assist them in using the platform
effectively.
Data Search and Filtering Interface: Users can search and filter data based on
specific criteria, allowing them to retrieve relevant information quickly.
Error and Exception Handling Interface: When errors occur, an interface can display
informative error messages and provide guidance on how to resolve or report the issue.

These user interfaces collectively offer a comprehensive and intuitive user experience, facilitating
efficient data entry, analysis, visualization, approval workflows, and decision-making within the
RUSH platform.

This interface showcases the overall layout, design elements, and interactions that users can
expect when navigating through the platform. It provides a valuable reference for understanding
the visual aesthetics, information architecture, and user flow incorporated into the RUSH platform's
user interfaces. By exploring the design interface, stakeholders can gain a clearer understanding of
the platform's look and feel, facilitating better collaboration and alignment throughout the
development process.

For a detailed visual representation of the user interfaces within the RUSH platform, please
refer to the design interface available at the following link: RUSH Platform Design

Interface.

https://xd.adobe.com/view/26c48557-3a9c-40c6-a370-f4af7991c47a-7397/
https://xd.adobe.com/view/26c48557-3a9c-40c6-a370-f4af7991c47a-7397/

The platform incorporates robust error handling strategies to address various types of errors that
may occur during operation. Here are the key considerations for error handling in the RUSH
platform:

1. Error Logging and Monitoring: The platform logs errors and exceptions that occur
during runtime. These logs capture relevant details such as the error type, timestamp,
user context, and relevant system information. Error logs enable developers and
administrators to identify and troubleshoot issues efficiently, helping to improve system
reliability and performance.

2. User-Friendly Error Messages: When errors occur, the platform provides user-friendly
error messages that communicate the issue clearly and concisely. Clear error messages
help users understand the problem and take appropriate actions or seek assistance. The
messages may include relevant details about the error, potential solutions, and contact
information for support if necessary.

3. Graceful Degradation and Recovery: The platform is designed to handle errors
gracefully, minimising disruptions and providing fallback mechanisms where possible. For
example, if a specific functionality or service becomes temporarily unavailable, the
platform can display a fallback message or provide alternative options to ensure users can
continue their work or access relevant information.

4. Error Validation and Input Sanitisation: The platform applies comprehensive input
validation and sanitisation techniques to prevent and handle errors caused by invalid or
malicious user input. This includes validating user-submitted data, sanitising inputs to
prevent code injection or script attacks, and ensuring that data conforms to expected
formats and ranges. Proper input validation reduces the risk of errors and security
vulnerabilities.

5. Exception Handling and Error Recovery: The platform utilises exception handling
mechanisms to catch and handle errors gracefully. Exceptions are caught, logged, and
processed to prevent system crashes or unexpected behavior. The platform incorporates
appropriate error recovery strategies, such as rolling back transactions or reverting to
previous states, to maintain data integrity and prevent data loss or corruption.

6. Error Reporting and Support Channels: The platform provides channels for users to
report errors and seek support. These channels can include contact forms, dedicated
support email addresses, or a help-desk system. By offering reliable channels for error
reporting and support, users can report issues promptly and receive assistance in
resolving them effectively.

7. Continuous Improvement: The platform regularly assesses error patterns and user
feedback to identify recurring issues and areas for improvement. By analising error
trends, the development team can prioritise bug fixes, optimise system components, and

Error Handling
Error Handling Rules

enhance the overall stability and reliability of the platform.

The following section provides an overview of potential errors that may occur within the RUSH
platform. While data validation plays a significant role in minimizing errors during data entry and
form submissions, certain issues can still arise in other aspects of the platform's functionality.
These errors encompass various areas, including authentication, authorization, file uploads, data
synchronization, network connectivity, server timeouts, data import/export, data corruption,
missing data, report generation, visualization, server overload, email notifications, and third-party
integrations. By being aware of these potential errors, the development team can proactively
address and implement proper error handling mechanisms to ensure smooth operations, enhance
user experience, and maintain data integrity throughout the platform.

1. Database Connection Error: Failure to establish a connection with the database server,
resulting in the inability to retrieve or store data.

2. Authentication Error: Users may encounter authentication errors when attempting to
log in, indicating invalid credentials or authentication failures.

3. Authorisation Error: Users may encounter authorisation errors when accessing certain
features or performing actions for which they do not have sufficient privileges.

4. File Upload Error: When uploading files, errors may occur due to file format
compatibility, size limitations, or network connectivity issues.

5. Data Synchronisation Error: In a multi-user environment, conflicts may arise when
multiple users attempt to update the same data simultaneously, leading to
synchronisation errors.

6. Network Connectivity Error: Users may experience network connectivity issues,
preventing them from accessing the platform or transmitting data.

7. Server Timeout Error: When processing resource-intensive tasks, such as generating
complex reports or visualizations, server timeouts may occur if the process exceeds the
maximum allowed execution time.

8. Data Import/Export Error: Errors may occur during the import or export of data,
resulting in data loss, formatting issues, or mismatches between source and destination
formats.

9. Data Corruption Error: In rare cases, data corruption may occur, leading to
inconsistencies or incorrect values in the database.

10. Missing Data Error: Users may encounter missing data issues when attempting to
retrieve or access specific records or fields that have not been properly captured or
stored.

11. Report Generation Error: Errors may occur during the generation of reports, resulting
in incomplete or inaccurate data representation or formatting issues.

12. Visualization Error: Issues with data visualization components, such as charts or
graphs, may lead to incorrect data representation or inconsistencies in visual outputs.

13. Server Overload Error: During periods of high user activity or resource-intensive tasks,
the server may become overloaded, causing slowdowns or system instability.

List Errors

14. Email Notification Error: Failure to send email notifications, such as approval requests
or password reset emails, may occur due to issues with the email service or configuration.

15. Third-Party Integration Error: Errors may arise when integrating with external services
or APIs, resulting in data transfer issues or functionality limitations.

These errors represent potential issues that may arise in the RUSH platform, excluding errors
already addressed by data validation measures. It's crucial to implement proper error handling and
logging mechanisms to promptly identify, track, and resolve these errors, ensuring the smooth
functioning of the platform.

The RUSH platform incorporates multiple security measures to safeguard data, protect user
privacy, and ensure secure operations across its Docker containers and cloud-based infrastructure.
Here are the key security considerations in the platform:

1. Container Security (Docker): The Docker containers, including the Back-end and
Worker containers, are designed with security in mind. The containers are configured to
follow best practices such as using official base images, regularly updating dependencies,
and employing secure container runtime configurations. These measures reduce the risk
of vulnerabilities and unauthorised access within the containerised environment.

2. Access Control and Authentication: The platform implements robust access control
mechanisms to ensure that only authorised users can access the system and its
functionalities. User authentication, such as through the use of JWT (JSON Web Token), is
employed to verify user identities and grant appropriate access based on roles and
permissions. This helps prevent unauthorised access to sensitive data and functionalities.

3. Network Security (NGINX): The Front-end container, powered by NGINX, helps enforce
security measures at the network level. NGINX can be configured to handle SSL/TLS
encryption, protecting data in transit between users and the platform. It can also serve as
a reverse proxy, effectively managing incoming traffic and providing an additional layer of
security to prevent potential attacks.

4. Secure Database Storage (Cloud-SQL): The RUSH platform utilises Cloud-SQL for
secure database storage. Cloud-SQL offers built-in security features, including encryption
at rest and transit, role-based access control, and regular security updates. These
measures help protect the integrity and confidentiality of the platform's data stored in the
Cloud-SQL database.

5. Secure File Storage (Cloud Storage Bucket): The platform leverages Cloud Storage
Bucket for secure file storage. Cloud Storage provides robust access controls, including
fine-grained permissions, encryption, and auditing capabilities. This ensures that data
files, such as uploaded documents, are securely stored and protected from unauthorised
access. The endpoints of file should only served by the back-end so it also applies
authentication.

Security Considerations

6. Security Monitoring and Auditing: The platform implements security monitoring and
auditing tools to detect and respond to potential incidents. System logs and activity
records are regularly reviewed to identify any suspicious activities or breaches.
Additionally, periodic security audits are conducted to assess and address potential
vulnerabilities proactively.

7. User Education and Awareness: The platform emphasise user education and
awareness regarding security best practices. Users are encouraged to follow strong
password policies: Lowercase, Numbers, Special Character, Uppercase Character,
No White Space, and Minimum 8 Characters. By promoting user security awareness,
the platform strengthens overall security posture.

The RUSH platform has several performance considerations, particularly in relation to visualisation,
excel data download, data upload, and validation. While these functionalities are crucial for
effective data management and analysis, they can pose potential performance challenges due to
the volume and complexity of the data involved. The platform takes these considerations into
account to optimise performance and ensure a smooth user experience. Here are the key
performance considerations:

1. Visualisation: Visualisations are powerful tools for data analysis and communication.
However, generating complex visualisations from large datasets can be computationally
intensive and may lead to performance issues. The RUSH platform employs optimisation
techniques, such as efficient data retrieval, caching, and rendering algorithms, to enhance
the speed and responsiveness of visualisations. It strives to strike a balance between
visual richness and performance to provide users with meaningful insights without
sacrificing usability.

2. Excel Data Download: The ability to download data in Excel format is essential for users
to perform in-depth analysis and reporting. However, large datasets or complex queries
can result in long download times and increased server load. To mitigate this, the RUSH
platform optimises the data retrieval and export process, employing techniques such as
data compression and efficient file generation. It aims to minimise download times and
ensure a seamless user experience when exporting data to Excel.

3. Data Upload and Validation: Data upload and validation involve processing and
verifying large volumes of data. This process can be time-consuming, particularly when
dealing with extensive datasets or complex validation rules. The RUSH platform optimises
data upload and validation processes through efficient algorithms and parallel processing
techniques. It strives to expedite the data entry process while maintaining data integrity
and accuracy.

To ensure optimal performance, the RUSH platform continuously monitors system performance,
identifies bottlenecks, and implements performance optimisations as needed. This may involve
infrastructure scaling, database optimisations, query optimisations, and caching strategies. Regular

Performance Considerations

maintenance and updates are conducted to keep the platform running smoothly and efficiently.

It is worth noting that the platform's performance can also be influenced by factors such as
network connectivity, hardware capabilities, and user behavior. To mitigate these factors, the
RUSH platform provides guidelines and best practices for users to optimise their own data handling
processes and network connectivity.

The RUSH platform follows a deployment strategy that leverages the capabilities of the Google
Cloud Platform (GCP) to ensure efficient and reliable deployment of the application. The
deployment strategy includes the use of Google Kubernetes Engine (GKE) to manage containers,
the storage of container images in the Container Registry with git hash suffixes, the utilisation of
ingress and load balancers for routing traffic, Cloud DNS for domain management, and IAM key
management services for secure access to CloudSQL using gcloud proxy. Here's an explanation of
each component of the deployment strategy:

1. Google Kubernetes Engine (GKE):
GKE is utilised as the container orchestration platform for deploying and managing
the RUSH platform's containers.
The application is deployed in two clusters: the test cluster and the production
cluster.
The test cluster receives updates from the main branch, allowing for continuous
integration and testing of new features and code changes.
The production cluster receives tagged releases, ensuring stability and reliability for
the live environment.

2. Container Registry:
Container images of the RUSH platform are stored in the Google Container Registry.
Each container image is suffixed with a git hash, providing a unique identifier for
version control and traceability.
This approach allows for efficient image management, rollbacks, and reproducible
deployments.

3. Ingress, Load Balancers, and Cloud DNS:
Ingress and load balancers are utilised to route and distribute traffic to the RUSH
platform's services within the GKE clusters.
Ingress acts as the entry point, directing requests to the appropriate services based
on defined rules.
Load balancers ensure high availability and scalability by distributing traffic across
multiple instances of the platform.
Cloud DNS is used for domain management, mapping domain names to the
respective IP addresses of the deployed services.

4. CloudSQL and IAM Key Management Services:
The RUSH platform accesses CloudSQL, the managed relational database service on
GCP, for data storage and retrieval.

Deployment Strategy

IAM key management services are utilised to securely connect to CloudSQL using
the gcloud proxy.
This approach ensures secure and controlled access to the database, limiting
exposure of sensitive information.

By utilising GCP services such as GKE, Container Registry, ingress, load balancers, Cloud DNS,
CloudSQL, and IAM key management services, the RUSH platform benefits from a robust and
scalable deployment strategy. It enables efficient management of containers, version control of
images, routing and distribution of traffic, secure access to the database, and reliable domain
management. This deployment strategy ensures a stable and performant environment for running
the RUSH platform, facilitating seamless user access and interaction.

To view the example deployment script for the RUSH platform, please refer to the following
link: RUSH Platform CI/CD.

Testing Strategy
Testing Framework and Tools

https://wiki.cloud.akvo.org/uploads/images/gallery/2023-05/SNGroaBTwYeWYDll-rtmis-deployment.png
https://github.com/akvo/rtmis/tree/main/ci

The RUSH platform employs a comprehensive testing strategy to ensure the reliability,
functionality, and quality of both its back-end and front-end components. The testing strategy
encompasses different levels of testing, including back-end testing with Django Test, front-end
testing with Jest, and container network testing with HTTP (bash). Here is an overview of the testing
strategy for the RUSH platform:

Back-end Testing with Django Test

The back-end testing of the RUSH platform is conducted using Django Test, a testing
framework provided by Django.
Django Test enables the creation of test cases and test suites to evaluate the functionality
and behavior of the back-end components.
Back-end testing focuses on unit tests, integration tests, and API tests to validate
individual modules, their interactions, and the API endpoints.
Test cases cover various scenarios, including positive and negative input cases, edge
cases, and boundary conditions to ensure robustness and accuracy.

Front-end Testing with Jest

The front-end testing of the RUSH platform is performed using Jest, a JavaScript testing
framework widely used for testing React applications.
Jest facilitates the creation of unit tests, integration tests, and component tests to assess
the behavior and functionality of the front-end components.
Front-end testing focuses on validating the UI components, user interactions, and the
correctness of the application's logic and state management.
Test cases cover various scenarios, including rendering components, user actions, and
expected outcomes to ensure the desired user experience and functionality.

Container Network Testing with HTTP (bash) WILL BE REPLACED BY SELENIUM-HQ:

The RUSH platform conducts container network testing using HTTP (bash) to assess the
communication and network connectivity between different containers within the Docker
environment.
Container network testing ensures that the back-end, worker, and front-end containers
can communicate effectively and exchange data seamlessly.
Test scenarios involve sending HTTP requests and verifying the responses, ensuring the
expected data flow and connectivity between containers.

The testing strategy for the RUSH platform aims to achieve thorough coverage across the back-
end, front-end, and container network aspects. It focuses on validating the functionality, data flow,
interactions, and network connectivity within the platform. Test cases are designed to cover a wide
range of scenarios, including normal operation, edge cases, and potential error conditions.

Hardware Capability Evaluation

In addition to the testing strategies mentioned earlier, the RUSH platform recognise the importance
of stress testing to evaluate the hardware capability and performance under heavy workloads. This
specifically applies to resource-intensive tasks such as data validation and data seeding from the
Excel bulk data upload feature. Stress testing is conducted to simulate high-demand scenarios and
identify potential bottlenecks or performance issues. Here's an explanation of the stress testing
approach:

Stress Testing

Stress testing involves subjecting the RUSH platform to simulated high-volume and high-
concurrency scenarios to evaluate its performance and robustness under heavy
workloads.
During stress testing, the platform is tested with large datasets or concurrent user loads
that closely represent real-world usage scenarios.
The focus is on measuring the response time, throughput, and resource utilisation to
identify any performance degradation, scalability issues, or resource limitations.

Data Validation Stress Test

A stress test specifically targeting the data validation process is conducted to assess how
the platform performs when validating large volumes of data from the Excel bulk data
upload feature.
The stress test involves simulating multiple concurrent data uploads, each containing a
significant amount of data that requires validation.
The test measures the time taken to process and validate the data, ensuring that the
platform maintains acceptable performance levels and does not become overwhelmed by
the workload.

Data Seeding Stress Test

A stress test focusing on the data seeding process is conducted to evaluate the platform's
capability to handle heavy data seeding operations resulting from the Excel bulk data
upload feature.
The stress test involves simulating a high number of concurrent data seeding requests,
each involving a large dataset to be inserted into the database.
The test measures the time taken to seed the data, ensuring that the platform can handle
the load without compromising performance or causing data integrity issues.

The stress testing process aims to identify any performance bottlenecks, resource limitations, or
scalability issues that may arise when the platform is subjected to heavy workloads. By conducting
stress tests, the development team can gather valuable insights and make necessary optimisations
to ensure that the platform can handle the expected load and perform optimally under stressful
conditions.

The development and operation of the RUSH platform are subject to certain assumptions and
constraints that influence its design and functionality. These assumptions and constraints are
important to consider as they provide context and boundaries for the platform's implementation.
Here are the key assumptions and constraints of the RUSH platform:

Technical Infrastructure: The RUSH platform assumes access to a reliable technical infrastructure,
including servers, networking components, and cloud-based services. It requires sufficient
computational resources, storage capacity, and network connectivity to handle the expected user
load and data processing requirements.

1. Data Availability and Quality: The platform assumes the availability and quality of data
from various sources, including county and national levels. It relies on the assumption that
relevant data is collected, validated, and provided by the respective stakeholders. The
accuracy, completeness, and timeliness of the data are crucial for effective analysis and
decision-making within the platform.

2. Compliance with Regulatory Requirements: The RUSH platform operates under the
assumption that it complies with applicable laws, regulations, and data privacy
requirements. It is assumed that necessary consent, data usage, and privacy policies are
in place to protect user data and comply with legal obligations.

3. User Adoption and Engagement: The platform assumes user adoption and
engagement, as its success relies on active participation and utilisation by relevant
stakeholders. It assumes that users, including data entry staff, data approvers,
administrators, and institutional users, will actively use the platform, contribute accurate
data, and engage in data analysis and decision-making processes.

4. System Scalability and Performance: The RUSH platform assumes that it can scale
and perform adequately to handle increasing user demand and growing data volumes
over time. It assumes that the necessary infrastructure and optimisations can be
implemented to maintain system performance, responsiveness, and reliability as the user
base and data size expand.

5. Collaboration and Data Sharing: The platform assumes a collaborative environment
and willingness among stakeholders to share data and insights. It assumes that relevant
agencies, organisations, and institutions are willing to collaborate, contribute data, and
use the platform's functionalities for informed decision-making and improved sanitation
and hygiene practices.

6. Resource Constraints: The development and maintenance of the RUSH platform
operate within resource constraints, such as budgetary limitations, time constraints, and

The stress testing phase is important to validate the hardware capability and scalability of
the RUSH platform, particularly during resource-intensive tasks like data validation and data
seeding from the Excel bulk data upload feature.

Assumptions and Constraints

availability of skilled personnel. These constraints may impact the scope, timeline, and
features of the platform's implementation and ongoing operations.

The RUSH platform incorporates various dependencies and frameworks to enable its functionality
and deliver a seamless user experience. The following dependencies are essential components
used in the development of the platform:

1. Django: The RUSH platform utilises Django, a high-level Python web framework, to build
the back-end infrastructure. Django provides a solid foundation for handling data
management, authentication, and implementing business logic.

2. Pandas: The platform relies on Pandas, a powerful data manipulation and analysis library
in Python, to handle data processing tasks efficiently. Pandas enables tasks such as data
filtering, transformation, and aggregation, enhancing the platform's data management
capabilities.

3. React: The front-end of the RUSH platform is developed using React, a popular JavaScript
library for building user interfaces. React enables the creation of dynamic and interactive
UI components, ensuring a responsive and engaging user experience.

4. Ant Design (antd): The platform utilises Ant Design, a comprehensive UI library based
on React, to design and implement a consistent and visually appealing user interface. Ant
Design provides a rich set of customisable and reusable UI components, streamlining the
development process.

5. Echarts: Echarts, a powerful charting library, is integrated into the RUSH platform to
generate various data visualisations. With Echarts, the platform can display charts,
graphs, and other visual representations of data, enabling users to gain insights and make
informed decisions.

6. D3: The RUSH platform incorporates D3.js, a JavaScript library for data visualisation. D3.js
provides a powerful set of tools for creating interactive and customisable data
visualisations, including charts, graphs, and other visual representations. By leveraging
D3.js, the platform can deliver dynamic and engaging data visualisations to users.

7. Leaflet: The platform incorporates Leaflet, a JavaScript library for interactive maps, to
handle geo-spatial data visualisation. Leaflet enables the integration of maps, markers,
and other geo-spatial features, enhancing the platform's ability to represent and analise
location-based information.

8. Node-sass: Node-sass is a Node.js library that enables the compilation of Sass
(Syntactically Awesome Style Sheets) files into CSS. The RUSH platform uses node-sass to
process and compile Sass files, allowing for a more efficient and maintainable approach to
styling the user interface.

Dependencies
Software Dependencies

In addition to the previously mentioned dependencies, the RUSH platform relies on the following
essential dependencies and libraries to support its functionality and development process:

1. Django Rest Framework (DRF): The RUSH platform utilises Django Rest Framework, a
powerful and flexible toolkit for building Web APIs. DRF simplifies the development of APIs
within the platform, providing features such as request/response handling, authentication,
serialisation, and validation. It enables seamless integration of RESTful API endpoints,
allowing for efficient communication between the frontend and backend components.

2. PyJWT: PyJWT is a Python library that enables the implementation of JSON Web Tokens
(JWT) for secure user authentication and authorisation. The RUSH platform utilises PyJWT
to generate, validate, and manage JWT tokens. JWT tokens play a crucial role in ensuring
secure user sessions, granting authorised access to specific functionalities and data within
the platform.

3. Sphinx: Sphinx is a documentation generation tool widely used in Python projects. The
RUSH platform incorporates Sphinx to generate comprehensive and user-friendly
documentation. Sphinx facilitates the creation of structured documentation, including API
references, code examples, and user guides. It streamlines the documentation process,
making it easier for developers and users to understand and utilise the platform's features
and functionalities.

By leveraging these additional dependencies, including Django Rest Framework, PyJWT, and
Sphinx, the RUSH platform gains essential support for building robust APIs, implementing secure
authentication mechanisms, and generating comprehensive documentation.

These dependencies contribute to the platform's overall functionality, security, and user-
friendliness, ensuring a well-rounded and effective solution for managing sanitation and hygiene
practices in Kenya.

The RUSH platform incorporates several master lists that play a vital role in its functioning and data
management. These master lists include the administrative levels, questionnaire definitions, and
the shape-file representing accurate administrative boundaries. The administrative levels master
list defines the hierarchical structure of Kenya's administrative divisions, facilitating data
organisation, user roles, and reporting.

An essential master list in the RUSH platform is the shape-file that accurately represents the
administrative levels of Kenya. This shape-file serves as a crucial reference for various components
within the system, including user management, data management, and visualisation. The
importance of the shape-file as a master list lies in its ability to provide precise and standardised
administrative boundaries, enabling effective data identification, filtering, and visualisation. Here's
an explanation of the significance of the shape-file in the RUSH platform:

Master Lists

Shape-file and Country Administrative Description

1. Accurate Administrative Boundaries:
The shape-file provides accurate and up-to-date administrative boundaries of Kenya,
including the national, county, sub-county, and ward levels.
These boundaries define the jurisdictional divisions within the country and serve as a
fundamental reference for assigning roles, managing data, and generating reports
within the platform.
The accuracy of administrative boundaries ensures that data and administrative
processes align with the established administrative hierarchy in Kenya.

2. Data Identification and Filtering:
The shape-file enables efficient data identification and filtering based on
administrative boundaries.
By associating data points with the corresponding administrative levels, the platform
can retrieve and present data specific to a particular county, sub-county, or ward.
This functionality allows users to view, analise, and report on data at different
administrative levels, facilitating targeted decision-making and resource allocation.

3. Visualisation and Geographic Context:
The shape-file serves as the basis for visualising data on maps within the RUSH
platform.
By overlaying data on the accurate administrative boundaries provided by the
shapefile, users can visualise the distribution of sanitation and hygiene indicators
across different regions of Kenya.
This geo-spatial visualisation enhances understanding, supports data-driven
decision-making, and aids in identifying geographic patterns and disparities.

4. Data Consistency and Standardisation:
The shape-file, being a standardised and authoritative source, ensures consistency
and uniformity in defining administrative boundaries across the platform.
It provides a reliable reference that aligns with the official administrative divisions
recognised by the Ministry of Health and other relevant authorities.
The use of a consistent and standardised master list facilitates data aggregation,
analysis, and reporting, ensuring reliable and comparable insights.

The shape-file sourced from the Ministry of Health should provide accurate administrative
boundaries, supports data identification and filtering, enables geo-spatial visualisation, and ensures
data consistency and standardisation. By utilising the shape-file as the master list, the platform can
effectively manage administrative processes, present data in a meaningful geographic context, and
contribute to evidence-based decision-making for improved sanitation and hygiene practices
throughout Kenya.

In addition to the administrative levels, the RUSH platform relies on another important master-list
that defines the questionnaires used within the system. The questionnaire definition plays a crucial

The shape-file sourced from the Ministry of Health acts as a crucial master list within the
RUSH platform.

Questionnaire Definitions and Form Management

role in capturing the necessary data points and structuring the information collection process.
Managing and maintaining the questionnaire forms are essential before seeding them into the
system. This section outlines the importance of questionnaire definitions and the process of form
management in the RUSH platform.

1. Questionnaire Definitions:
Questionnaire definitions define the structure, content, and data points to be
collected during data entry.
These definitions specify the questions, response options, and any associated
validations or skip patterns.
Questionnaire definitions determine the type and format of data that can be entered
for each question.
These definitions ensure consistency and standardisation in data collection across
the platform.

2. Form Management:
Form management involves the creation, customisation, and maintenance of the
questionnaire forms.
Before seeding the forms into the system, it is crucial to ensure their accuracy,
completeness, and adherence to data collection standards.
Form management includes activities such as form design, validation rules setup,
skip logic configuration, and user interface customisation.
It is important to conduct thorough testing and quality assurance to ensure that the
forms function correctly and capture the required data accurately.

3. Form Fixes and Updates:
As part of the form management process, it is essential to address any issues or
errors identified during testing or from user feedback.
Form fixes and updates may involve resolving bugs, improving user interface
elements, modifying question wording, or adjusting validation rules.
It is crucial to carefully test and validate the fixed forms to ensure that the changes
are successfully implemented and do not introduce new issues.

The RUSH platform relies on certain third-party services to enhance its functionality and provide
essential features. These services include Mailjet for email communication and optionally Cloud
Bucket as a storage service. Here's an explanation of their significance:

1. Mailjet:
Mailjet is utilised for seamless email communication within the RUSH platform.
It provides features such as email delivery, tracking, and management, ensuring
reliable and efficient communication between system users.

It is important to note that form management is an iterative process that may involve
continuous improvements and updates as new requirements, feedback, or changes in data
collection standards arise.

3rd-Party Services

https://www.mailjet.com/

Mailjet enables the platform to send notifications, reports, and other email-based
communications to users, enhancing user engagement and system responsiveness.

2. Cloud Bucket (Optional):
The RUSH platform offers the option to utilise Cloud Bucket, a cloud-based storage
service, for storing data such as uploaded or downloaded Excel files.
Cloud Bucket provides a secure and scalable storage solution, allowing for efficient
management of large data files.
By utilising Cloud Bucket, the platform offloads the burden of storing and managing
data files from the host server, resulting in improved performance and scalability.
Storing data files in Cloud Bucket also enhances data availability, durability, and
accessibility, ensuring seamless access to files across the platform.

The development and operation of the RUSH platform come with inherent risks that can impact its
effectiveness, security, and usability. Identifying and addressing these risks through appropriate
mitigation strategies is essential to ensure the smooth functioning and success of the platform.
Here are some key risks associated with the RUSH platform and their corresponding mitigation
strategies:

Risk: Unauthorised access, data breaches, or misuse of sensitive information.
Mitigation: Implement robust security measures, such as encryption, access controls, and regular
security updates. Conduct thorough security audits, provide user education on data security best
practices, and ensure compliance with data protection regulations.

Risk: System failures, infrastructure disruptions, or performance bottlenecks.
Mitigation: Employ redundant and scalable infrastructure to minimise single points of failure.
Regularly monitor system performance, conduct load testing, and implement disaster recovery
plans. Update software and hardware components to address vulnerabilities and ensure optimal
performance.

Risk: Inaccurate, incomplete, or unreliable data affecting decision-making processes.
Mitigation: Implement data validation mechanisms, enforce data entry standards, and provide

The use of Cloud Bucket as a storage service is optional, and alternative storage solutions
can be considered based on specific requirements and constraints of the RUSH platform.

Risks and Mitigation Strategies

Data Security and Privacy Risks

Technical Risks

Data Quality Risks

user training on data collection best practices. Conduct regular data quality checks and provide
feedback loops to data entry staff for improvement. Collaborate with data providers to improve
data accuracy and completeness.

Risk: Low user adoption, resistance to change, or lack of engagement with the platform.
Mitigation: Conduct user needs assessments, involve stakeholders in the platform's design and
development process, and provide comprehensive user training and support. Highlight the benefits
and value of the platform to promote user adoption and engagement. Continuously gather user
feedback and iterate on the platform based on user needs and preferences.

Risk: Limited collaboration and data sharing among stakeholders.
Mitigation: Foster strong partnerships with relevant agencies, organisations, and institutions.
Promote a culture of collaboration, sharing best practices, and jointly addressing common
challenges. Establish clear data sharing agreements and protocols to encourage stakeholder
participation and data contribution.

Risk: Insufficient resources (human, or technical) for platform development and maintenance.
Mitigation: Develop realistic resource plans and secure adequate funding for the platform's
implementation and ongoing operation. Optimise resource allocation, prioritise critical features and
functionalities, and leverage partnerships to share resources and expertise.

The implementation plan for the RUSH platform involves a structured approach to ensure
successful development and deployment. The plan includes tasks, timelines, and resource
requirements, taking into account the available team members. Here's an outline of the
implementation plan:

1. Analise requirements and finalise specifications.
2. Design the system architecture and database schema.

User Adoption and Engagement Risks

Stakeholder Collaboration Risks

Resource Risks

Regular risk assessments, monitoring, and proactive risk management practices should be
integrated into the platform's lifecycle to identify emerging risks and implement appropriate
mitigation strategies.

Implementation Plan

Task Breakdown

3. Develop the back-end functionality, including data management, API integration, and
authentication.

4. Implement the front-end components, including user interface design, data visualisation,
and user interactions.

5. Integrate and test the front-end and back-end components for seamless functionality.
6. Implement security measures, including JWT authentication and secure data handling.
7. Conduct thorough testing, including unit tests, integration tests, and user acceptance

testing.
8. Refine and optimise performance for data processing and visualisation.
9. Prepare documentation, including user guides, API documentation, and system

architecture documentation.
10. Plan and execute the deployment strategy on the Google Cloud Platform.

1. Analise requirements and finalise specifications: 1 week
2. System architecture and database schema design: 1 week
3. Back-end development: x weeks
4. Front-end development: x weeks
5. Integration and testing: x weeks
6. Security implementation: x weeks
7. Thorough testing and optimisation: x weeks
8. Documentation preparation: 1 week
9. Deployment on the Google Cloud Platform: 1 week

1. 2 Back-end Developers: Responsible for back-end development, API integration, and
database management.

2. 2 Front-end Engineers: Responsible for front-end development, user interface design,
and data visualisation.

3. 1 Project Supervisor: Oversees the project, provides guidance, and ensures adherence
to requirements, timelines and Pull Request reviews.

4. 1 Project Manager: Manages the project's overall progress, coordinates resources, and
communicates with stakeholders.

5. 1 Dev-ops Engineer: Handles deployment, infrastructure setup, and configuration on the
Google Cloud Platform.

The team members work collaboratively to ensure timely completion of tasks, quality assurance,
and adherence to project milestones. Regular communication, coordination, and agile project
management practices contribute to effective resource utilisation and smooth implementation.

Timelines

Resource Requirements

It is important to note that the timelines provided are estimates and can be adjusted based
on the complexity of the project, team dynamics, and any unforeseen challenges that may
arise during implementation.

To facilitate efficient communication and task management within the team, the RUSH platform
utilises Slack and Asana. These tools play crucial roles in enabling effective collaboration,
communication, and task tracking.

For document management, the RUSH platform utilises Google Drive. Team members can use
Google Drive to store and manage various project documents, including design specifications,
meeting minutes, reports, and other relevant files.

The RUSH project follows a hierarchical reporting structure to ensure efficient communication and
progress tracking. The hierarchy is designed to provide clear lines of reporting and facilitate
effective decision-making. Here's an overview of the report hierarchy:

1. Team Members
Back-end Developers, Front-end Engineers, and Dev-ops Person directly report their
progress, challenges, and updates to the Project Supervisor and Project Manager.
They communicate their completed tasks, pending work, and any obstacles they
encounter during their development and deployment activities with Asana.

2. Project Supervisor
The Project Supervisor oversees the technical aspects of the project.
They provide guidance, support, and technical expertise to the team members.
The Project Supervisor break down all the tasks in Asana and assign to team
members with due date.
The Project Supervisor works closely with the Project Manager to ensure alignment
with project goals and timelines.

3. Project Manager
The Project Manager is responsible for the overall management and coordination of
the RUSH project.
They track the progress of the development, monitor task completion, and manage
resources and timelines.
The Project Manager communicates project updates, risks, and milestones to
stakeholders and ensures effective collaboration among team members.

Regular meetings, such as stand-ups and sprint reviews, are conducted to discuss progress,
address challenges, and align efforts across the team. This reporting hierarchy ensures effective
communication, progress tracking, and efficient decision-making throughout the development and
deployment phases of the RUSH platform.

Communication and Task Management

Document Management

Report Hierarchy

The RUSH platform utilises various documentation references to provide comprehensive and
accessible documentation for users and developers. These references include:

1. Swagger:
Swagger is used to generate interactive API documentation for the RUSH platform's
Restful APIs.
By utilising the Open-API Specification, Swagger automatically generates detailed
API documentation, including endpoint descriptions, request examples, and response
details.
The Swagger documentation serves as a valuable resource for API consumers,
facilitating seamless integration and understanding of the available endpoints and
their functionality.

2. GitHub Wiki:
The RUSH platform leverages GitHub Wiki as a documentation reference for storing
and presenting project-related information.
The GitHub Wiki provides a collaborative space for developers to create and
maintain documentation directly within the project's repository.
It allows for the organisation of documentation pages, versioning, and easy
navigation, ensuring that the latest project information is readily available to team
members and contributors.

3. DBDocs.io:
DBDocs is utilised to generate comprehensive documentation for the RUSH
platform's database schema and structure.
DBDocs automatically extracts information from the database and generates clear
and well-structured documentation.
The DBDocs documentation serves as a valuable reference for understanding the
database design, relationships, and entity attributes.

4. ReadTheDocs:
ReadTheDocs is employed to host and present user and developer documentation
for the RUSH platform.
ReadTheDocs allows for the creation of user-friendly and searchable documentation,
making it easy for users to find the information they need.
It provides a centralised location for storing and organising documentation, ensuring
that both technical and non-technical users can access the necessary resources.

These documentation references, including Swagger, GitHub Wiki, DBDocs.io, and ReadTheDocs,
play integral roles in providing comprehensive, organised, and accessible documentation for the
RUSH platform. By utilising these resources, the platform ensures that users, developers, and API
consumers have the necessary information to effectively utilise and contribute to the platform.

Documentation References

The development of the RUSH platform involves a comprehensive low-level design (LLD) that
encompasses various aspects, including its purpose, functional overview, user roles, administrative
levels, dependencies, security considerations, testing strategies, and deployment plan. Through
meticulous planning and consideration of these factors, the RUSH platform aims to address
sanitation and hygiene challenges in rural and urban areas of Kenya effectively.

The platform's purpose is to provide real-time monitoring, information aggregation, and data
analysis to support decision-making and improve sanitation and hygiene practices. With its
capabilities such as data visualisation, questionnaire management, and user role administration,
the RUSH platform empowers stakeholders at different administrative levels to make informed
decisions and take appropriate actions.

The LLD also highlights the importance of master lists, including administrative levels and
questionnaire definitions, which serve as crucial references for data management, user roles, and
system operations. Additionally, the security considerations, testing strategies, and dependency
management outlined in the LLD ensure robustness, performance, and reliability of the platform.

The deployment strategy leverages Google Cloud Platform, utilising containerisation with GKE,
storing container images in the Container Registry, and employing services like CloudSQL, Cloud
Storage Bucket, Ingress, Load Balancers, and Cloud DNS. The implementation plan provides a
timeline, task breakdown, and resource requirements, allowing for efficient coordination and
progress tracking.

Furthermore, the RUSH platform embraces effective communication and task management through
the use of Slack and Asana, enabling seamless collaboration and efficient project execution. The
documentation references, including Swagger, GitHub Wiki, DBDocs, and ReadTheDocs, facilitate
comprehensive documentation and knowledge sharing among the team.

In conclusion, the RUSH platform's LLD serves as a foundational guide for its development,
emphasise the importance of functionality, data management, security, testing, deployment,
communication, and documentation. By adhering to this comprehensive design, the RUSH platform
aims to make significant contributions to improving sanitation and hygiene practices, ultimately
leading to better health outcomes in rural and urban areas of Kenya.

Conclusion

Revision #51
Created 30 May 2023 05:29:01 by Deden Bangkit
Updated 31 May 2023 16:13:17 by Deden Bangkit

