
Figure 1: New Control Center with Sidebar

The previous implementation of the user interface in the application primarily revolved around a
panel-based design complemented by a tabbed navigation system. This approach was
characterized by distinct sections within the main panel, where each section or page had its own
set of tabs for detailed navigation. Here's a closer look at the key features of this previous
implementation:

1. Panel-Based Layout:

2023 New Features

UI Branding
Migrating Panels to Sidebar Menu

Previous Implementation Overview

https://wiki.cloud.akvo.org/uploads/images/gallery/2023-12/WnO1xV6fjWpYONG8-canvas.png

The interface was structured around main panels, each representing a major
functional area of the application.
These panels served as the primary means of navigation and content organization,
providing users with a clear view of the available options and functionalities.

2. Tabbed Navigation:
Within each panel, a tabbed interface was used to further categorize and
compartmentalize information and features.
The UserTab component, for instance, was a pivotal element in this design, allowing
for the segregation of different user-related functionalities like Manage Data, User
Management or Approval Panel.

3. Role-Based Access: The navigation elements, both panels and tabs, were dynamically
rendered based on the user’s role and permissions. This ensured that users accessed
only the features and information pertinent to their roles.

4. Content Organization: The content within each panel was organized logically, with tabs
providing a secondary level of content segregation. This allowed users to navigate large
amounts of information more efficiently.

5. User Interaction: Interaction with the interface was primarily through clicking on various
panels and tabs. The UI elements were designed to be responsive to user actions,
providing immediate access to the content.

6. Aesthetic and Functional Consistency: The previous design maintained a consistent
aesthetic and functional approach across different panels and tabs, ensuring a cohesive
user experience.

7. Responsive Design: While the design was primarily desktop-focused, it included
responsive elements to ensure usability across various screen sizes.

8. State Management and URL Routing: The application managed the state of active
panels and tabs, with URL routing reflecting the current navigation path. This was crucial
for bookmarking and sharing links.

https://github.com/akvo/rtmis/blob/main/frontend/src/components/tabs/UserTab.js
https://github.com/akvo/rtmis/blob/00d842e32488d0d6bacfe4c2bfe6e24ce63d4588/frontend/src/lib/config.js#L39-L132

Figure 2: Previous Control Center

The redesign of an application's user interface to incorporate a sidebar-based layout with
expandable content requires a strategic and thoughtful approach. This transition aims to enhance
the desktop user experience by offering a more intuitive and organized navigation system. These
considerations will guide the development process, ensuring that the final product efficiently and
effectively meets user needs. Below is a list of these key considerations:

1. Navigation Hierarchy and Structure:

Clear Hierarchy: Design a straightforward and logical hierarchy within the sidebar.
Ensure users can easily understand the relationship between main categories and their
expandable sub-categories.
Expandable Sections: Implement expandable sections for main categories to reveal
sub-categories, using visual cues for differentiation.

2. User Role and Access Control:

Dynamic Sidebar Content: Adjust the sidebar content dynamically based on the user's
role and permissions, ensuring appropriate access control.
Relevant Access: Ensure users only see and access sidebar items pertinent to their
roles.

Key Considerations

https://wiki.cloud.akvo.org/uploads/images/gallery/2023-12/WFId8cvRsfRgpy0g-canvas.png

3. State Management and URL Routing:

State Synchronization: Manage the state of the expanded/collapsed sections and the
active selection in sync with the application's routing.
URL Structure: Design URLs to reflect the nested nature of the sidebar, facilitating
intuitive navigation and bookmarking.

4. User Experience and Interaction:

Active Section Indicators: Employ visual indicators to denote which section is active or
expandable.
Simplicity: Avoid making the sidebar too complex or crowded, even on desktop.

5. Content Organization and Layout:

Logical Grouping: Group related items in the sidebar in a way that makes sense to the
user, facilitating easier navigation.
Responsive Main Content Area: Ensure the main content area adapts well to changes
in the sidebar, especially when sections are expanded or collapsed.

6. Performance Considerations:

Optimized Performance: Even without lazy loading, ensure that the performance is
optimized, particularly if the sidebar includes dynamic or data-intensive elements.
Efficient Pagination: Since the pages use pagination, ensure it's implemented
efficiently to handle data loading without performance lags.

7. Testing and Validation:

Browser Testing: Test the sidebar across different browsers to ensure consistency and
functionality.
User Feedback: Collect user feedback focused on the desktop experience to refine the
navigation model.

Example Ant-design implementation of sidebar component:
https://ant.design/~demos/components-layout-demo-side

User Access Overview
const config = {
...
roles: [
 {
 id: 1,

https://ant.design/~demos/components-layout-demo-side

Source: https://github.com/akvo/rtmis/blob/main/frontend/src/lib/config.js

1. Roles Array:
The roles array within config defines different user roles in the system. Each role is
an object with specific properties.
Example Role Object:

id : A unique identifier for the role (e.g., 1 for Super Admin).
name : The name of the role (e.g., "Super Admin").

 name: "Super Admin",
 filter_form: false,
 page_access: [
 ...
 "visualisation",
 "questionnaires",
 "approvals",
 "approvers",
 "form",
 "reports",
 "settings",
 ...
],
 administration_level: [1],
 description:
 "Overall national administrator of the RUSH. Assigns roles to all county admins",
 control_center_order: [
 "manage-user",
 "manage-data",
 "manage-master-data",
 "manage-mobile",
 "approvals",
],
 },
 ...
],
checkAccess: (roles, page) => {
 return roles?.page_access?.includes(page);
},
...
}

https://github.com/akvo/rtmis/blob/main/frontend/src/lib/config.js

filter_form : A boolean indicating whether the role has specific form filters (e.g.,
false for Super Admin).
page_access : An array listing the pages or features the role has access to (e.g.,
"visualisation", "questionnaires", etc. for Super Admin).
administration_level : An array indicating the level(s) of administration the role
pertains to (e.g., [1] for national level administration for Super Admin).
description : A brief description of the role (e.g., "Overall national administrator
of the RUSH. Assigns roles to all county admins" for Super Admin).
control_center_order : An array defining the order of items or features in the
control center specific to the role.

2. Check Access Function:
checkAccess is a function defined within config to determine if a given role has
access to a specific page or feature.
It takes two parameters: roles (the role object) and page (the page or feature to
check access for).
The function returns true if the page_access array of the role includes the specified
page , indicating that the role has access to that page.
Example Usage of checkAccess:

λ ag config.checkAccess
pages/profile/components/ProfileTour.jsx
19: ...(config.checkAccess(authUser?.role_detail, "form")
28: ...(config.checkAccess(authUser?.role_detail, "approvals")

pages/settings/Settings.jsx
29: config.checkAccess(authUser?.role_detail, p.access)

pages/control-center/components/ControlCenterTour.jsx
14: ...(config.checkAccess(authUser?.role_detail, "data")
29: config.checkAccess(authUser?.role_detail, "form")
38: ...(config.checkAccess(authUser?.role_detail, "user")
48: config.checkAccess(authUser?.role_detail, "form")
57: ...(config.checkAccess(authUser?.role_detail, "approvals")

components/layout/Header.jsx
74: {config.checkAccess(user?.role_detail, "control-center") && (

Role-Based Access Control (RBAC): This configuration is a clear example of RBAC,
where access to different parts of the application is controlled based on the user's role.

Usage and Implications

Dynamic Access: The system can dynamically render UI elements and allow actions
based on the user's role, enhancing security and user experience.
Scalability and Maintenance: By defining roles and access rights in a centralized
configuration, the system becomes easier to manage and scale. Adding a new role or
modifying access rights becomes a matter of updating the config object.
Functionality: The checkAccess function simplifies the process of verifying access rights,
making the code more readable and maintainable.

Figure 3: Administration and Entities Hierarchy

Step 1: Click the "Add Attribute" button.
Step 2: Fill in the attribute name and select the type (e.g., "Value","Option", "Multiple
Option", "Aggregate").

Master Data Management

User Interactions
Add / Edit Administration Attribute

Step 3: If the attribute type is "Option,Multiple Option or Aggregate" click the "+" button
to add more options.
Step 4: Click "Submit" to save.
Step 5: Success alert message appears and return to Administration Attribute list

API: administration-endpoints

Step 1: Click "Add New Administration" or select an administrative area to edit.
Step 2: Select Level Name. The options will be in between National to Lowest Level, so
National and Lowest Level will be hidden.
Step 3: Select the parent administration using a cascading drop-down.
Step 4: Fill in administration details (name, parent, and code).
Step 5: Fill in attributes and their values.

For Value type: Input Number
For Option and Multiple Option type: Drop-down option
For Aggregate: It will shows table with 2 columns, the columns are: name, value

Name: the dissagregation name
Value: Input Number

Step 6: Click "Submit" to save.
Step 7: A success message appears confirming the administration has been added or
updated.
Step 8: Return to administration list.

API: administration-endpoints

Step 1: Click on the "Add Entity" or "Edit Entity" button from the Entity List Page to start
the process.
Step 2: Fill in the entity details such as the name of the entity (e.g., "Health Facility",
"School").
Step 3: Click the "Submit" button to save the new or updated entity information.
Step 4: A success message appears confirming the entity has been added or updated.
Step 5: Return to Entity List

API: entity-endpoints

Add / Edit Administration

The option names for the Level are situated between the National and Lowest levels. The
inclusion of the National Level is not feasible, as it would result in the appearance of more
than two countries, rendering the selection of a parent level logically null. While the addition
of the Lowest Level is achievable, it is necessary to inhibit the display of the last cascade
option to ensure that any newly added administration does not have an undefined level.

Add / Edit Entity

https://wiki.cloud.akvo.org/books/rtmis/page/2023-new-features#bkmrk-administration-endpo
https://wiki.cloud.akvo.org/books/rtmis/page/2023-new-features#bkmrk-administration-crud
https://wiki.cloud.akvo.org/books/rtmis/page/2023-new-features#bkmrk-administration-endpo
https://wiki.cloud.akvo.org/books/rtmis/page/2023-new-features#bkmrk-entity-endpoints

Step 1: Click on the "Add Entity Data" or "Edit Entity Data" button to begin from the
Entity Data List.
Step 2: Choose the entity from a drop-down list for which you want to add or edit data.
Step 3: Fill in the specific data for the selected entity, such as services offered, number of
staff, etc.
Step 4: Select the Administration ID from the cascade drop down. This ID links the entity
data to a specific administrative unit.
Step 5: Click the "Submit" button to save the new or updated entity data.
Step 6: A success message appears confirming the entity data has been added or
updated.
Step 7: Return to Entity Data List

API: entity-data-endpoints

Use Case

We have a dataset that contains categorical information about the types of land use for various
regions. This data will be utilized to classify and analyze land use patterns at the county level.

Feature

To achieve this, we will need to define option values for an attribute. In this scenario, the workflow
is as follows:

Define Attribute

Attribute Name: Land Use Type
Attribute Code: <Unique Identifier>Land_Use_Type
Type: Categorical (Option Values)
Administration Level: County

Define Option Values

Option Name: Residential
Option Code: Residential

Option Name: Commercial
Option Code: Commercial

Option Name: Agricultural

Add / Edit Entity Data

Administration / Entity Attribute Types
Option & Multiple Option Values

https://wiki.cloud.akvo.org/books/rtmis/page/2023-new-features#bkmrk-entity-endpoints

Option Code: Agricultural

Upload Data for Counties

County Attribute Code Value

County A Land_Use_Type Residential

County B Land_Use_Type Commercial

County C Land_Use_Type Agricultural

In this case, we define the "Option Values" for the "Land Use Type" attribute, allowing us to
categorize land use patterns at the county level. The actual data for individual counties is then
uploaded using the defined options.

Use Case

We possess household counts from the 2019 census that correspond to the RTMIS administrative
list at the sub-county level. This data can be employed to compute the household coverage per
county, which is calculated as (# of households in that sub-county in RTMIS / # from the census).

Feature

To achieve this, we need to store the population value for individual sub-counties as part of their
attributes. In this scenario, the workflow is as follows:

Define Attribute

Attribute Name: Census HH Count
Attribute Code: <Unique Identifier>Census_HH_Count
Type: Single Numeric Value
Administration Level: Sub-County

Upload Data for Individual Sub-Counties

Sub-County Attribute Code Value

CHANGAMWE Census_HH_Count 46,614

JOMVU Census_HH_Count 53,472

In this case, the values for the county level will be automatically aggregated.

Use Case

Single Numeric Values

Disaggregated Numeric Values

We aim to import data from the CLTS platform or the census regarding the count of different types
of toilets, and we have a match at the sub-county level. This data will serve as baseline values for
visualization.

Feature

For this use case, we need to store disaggregated values for an attribute. To do so, we will:

Define the Attribute

Attribute Name: Census HH Toilet Count
Attribute Code: <Unique Identifier>Census_HH_Toilet_Count
Type: Disaggregated Numeric Values
Disaggregation: “Improved”, “Unimproved”
Administration Level: Sub-County

Upload Data for Individual Sub-Counties

Sub-County Attribute Code Disaggregation Value

CHANGAMWE Census_HH_Toilet_Count Improved 305,927

CHANGAMWE Census_HH_Toilet_Count Unimproved 70,367

pos table column null dtype len default

1 Entities id Integer

2 Entities name Text

pos table column null dtype len default

1 Entity Data id Integer

2 Entity Data entity_id Integer

3 Entity Data code Yes Text

4 Entity Data name Text

Database Overview
Entities Table

Entity Data Table

pos table column null dtype len default

5 Entity Data administration_id Integer

pos table column null dtype len default

1 Entity Attributes id Integer

2 Entity Attributes entity_id Integer

3 Entity Attributes name Text

pos table column null dtype len default

1 Entity Attributes
Options

id Integer

2 Entity Attributes
Options

entity_attribute_id Integer

3 Entity Attributes
Options

name Text

pos table column null dtype len default

1 Entity Values id Integer

2 Entity Values entity_data_id Integer

3 Entity Values entity_attribute_id Integer

4 Entity Values value Text

pos table column null dtype len default

1 administrator id NO bigint administrator_id_se
q

2 administrator code YES character varying 255

3 administrator name NO text

Entity Attributes

Entity Attributes Options

Entity Values

Administration Table

pos table column null dtype len default

4 administrator level_id NO bigint

5 administrator parent_id YES bigint

6 administrator path YES text

pos table column null dtype len default

1 Administration Attributes id Integer

2 Administration Attributes level_id Integer

3 Administration Attribute code Text Unique
(Auto-
Generated)

4 Administration Attributes Type Enum (Number, Option, Aggregate)

5 Administration Attributes name Text

pos table column null dtype len default

1 Administration Attributes
Options

id Integer

2 Administration Attributes
Options

administration_attributes_id Integer

3 Administration Attributes
Options

name Text

pos table column null dtype len default

1 Administration Values id Integer

2 Administration Values administration_id Integer

3 Administration Values administration_attri
butes_id

Integer

4 Administration Values value Integer

5 Administrative Values option Text

Rules:

Attribute Type: Numeric

Administration Attributes

Administration Attributes Options

Administration Values

value: NOT NULL
option: NULL

Attribute Type: Option
value: NULL
option: NOT NULL

Attribute Type: Aggregate
value: NOT NULL
option: NOT NULL

Validation for Option Type

If parent has a value for a particular administration_attributes_id, then invalidate the
children input.
If children have a value for a particular administration_attributes_id, then override the
children value.

id type name attribute option value

1 administration Bantul Water Points
Type

Dugwell 1

2 entity Bantul School Type of school Highschool 1

Materialized View for Aggregation
Visualization Query

API Endpoints
Administration Endpoints
Administration Create / Update (POST & PUT)

{
 "parent_id": 1,
 "name": "Village A",
 "code": "VA",
 "attributes": [{
 "attribute":1,
 "value": 200,
 },{

 "attribute":2,
 "value": "Rural",
 },{
 "attribute":3,
 "value": ["School","Health Facilities"],
 },{
 "attribute":4,
 "value": {"Improved": 100,"Unimproved": 200},
 }
]
}

Administration Detail (GET)

{
 "id": 2,
 "name": "Tiati",
 "code": "BT",
 "parent": {
 "id": 1,
 "name": "Baringo",
 "code": "B"
 },
 "level": {
 "id": 1,
 "name": "Sub-county"
 },
 "childrens": [{
 "id": 2,
 "name": "Tiati",
 "code": "BT"
 }],
 "attributes": [{
 "attribute":1,
 "type": "value",
 "value": 200,
 },{
 "attribute":2,
 "type": "option",
 "value": "Rural",

Query Parameters (for filtering data):

parent (only show data that has same parent id, so the parent itself should not be
included)
search (search keyword: by name or code)
level
Rules:

Always filter parent_id = null (Kenya) by default

 },{
 "attribute":3,
 "type": "multiple_option",
 "value": ["School","Health Facilities"],
 },{
 "attribute":4,
 "type": "aggregate",
 "value": {"Improved": 100,"Unimproved": 200},
 }
]
}

Administration List (GET)

{
 "current": "self.page.number",
 "total": "self.page.paginator.count",
 "total_page": "self.page.paginator.num_pages",
 "data":[
 {
 "id": 2,
 "name": "Tiati",
 "code": "BT",
 "parent": {
 "id": 1,
 "name": "Baringo",
 },
 "level": {
 "id": 1,
 "name": "Sub-county"
 }
 }

]}

Administration Attributes CRUD (POST & PUT)

{
 "name": "Population",
 "type": "value",
 "options": []
}

Administration Attributes (GET)

[{
 "id": 1,
 "name": "Population",
 "type": "value",
 "options": []
},{
 "id": 2,
 "name": "Wheter Urban or Rural",
 "type": "option",
 "options": ["Rural","Urban"]
},{
 "id": 3,
 "name": "HCF and School Availability",
 "type": "multiple_option",
 "options": ["School","Health Care Facilities"]
},{
 "id": 4,
 "name": "JMP Status",
 "type": "aggregate",
 "options": ["Improved","Unimproved"]
}]

Entity Endpoints
Entity Create / Update (POST / PUT)

{
 "name": "Schools",

}

Entity List (GET)

{
 "current": "self.page.number",
 "total": "self.page.paginator.count",
 "total_page": "self.page.paginator.num_pages",
 "data":[
 {
 "id": 1,
 "name": "Health Facilities",
 },
 {
 "id": 2,
 "name": "Schools",
 }
]}

Entity Data Endpoints
Entity Data Create / Update (POST / PUT)

{
 "name": "Mutarakwa School",
 "code": "101",
 "administration": 1,
 "entity": 1
}

Entity Data List (GET)

{
 "current": "self.page.number",
 "total": "self.page.paginator.count",
 "total_page": "self.page.paginator.num_pages",
 "data":[
 {
 "id": 1,
 "name": "Lamu Huran Clinic",

As an administrator of the system, the ability to efficiently manage and update administrative data
is crucial. To facilitate this, a feature is needed that allows for the bulk uploading of administrative
data through a CSV file. This CSV file format is generated based on administration level table and
administrative attribute table. When downloading a template, system administrators are given the
ability to choose what attributes they want to include in the template.

The CSV template, will contain columns representing all administrative levels (such as National,
County, Sub-County, Ward, and Village) along with their respective IDs. Additionally, it will include
columns for selected attributes associated with each administrative unit, as defined in the
administration attribute table.

The system should accept CSV files for bulk upload.
The CSV file must include columns for different administrative levels (e.g., National,
County, Sub-County, Ward, Village).
The CSV tile must include only selected attributes.
Each administrative level column in the CSV file must be filled to ensure proper
hierarchical placement.
Columns for administrative codes and attributes are included but are optional to fill.

 "code": "101",
 "administration": {
 "id": 111,
 "name": "Bura",
 "full_name": "Kenya - Tana River - Bura - Bura - Bura",
 "code": null
 },
 "entity": {
 "id": 1,
 "name": "Health Care Facilities"
 }
 },
]}

Bulk Upload

Acceptance Criteria
CSV File Format and Structure

Optional Codes and Attributes

While the administrative codes and attribute columns are provided in the CSV template,
filling them is optional.
The system should be able to process the CSV file and update the administration data
correctly, even if some or all of the code and attribute columns are left blank.

The system should validate the CSV file to ensure that all required administrative level
columns are filled.
The system should handle empty optional fields (codes and attributes) gracefully without
causing errors.
Any discrepancies or format errors in the CSV file should be reported back to the user for
correction via email.
The system should process the CSV file efficiently, updating existing records and adding
new ones as necessary.
The process should be optimized to handle large datasets without significant performance
issues.

The user should receive clear feedback on the progress of the upload, including
confirmation via email once the upload is complete.
The system should provide detailed error messages or guidance in case of upload failures
or data inconsistencies.

County Sub-
County

Ward Village Populatio
n

Whether_
Urban_or

_Rural

HCF_and_
School_A
vailabilit

y

JMP_Stat
us_Impro

ved

JMP_Stat
us_Unimp

roved

Kitui Mwingi
North

Kyuso Ikinda 200 Rural School;He
alth Care
Facilities

100 200

Kitui Mwingi
North

Kyuso Gai
Central

150 Urban Health
Care
Facilities

120 180

County, Sub-County, Ward, Village: Names of the administrative units at each level.
Population: Corresponds to the "Population" attribute.
Whether_Urban_or_Rural: Corresponds to the "Whether Urban or Rural" attribute.
HCF_and_School_Availability: Corresponds to the "HCF and School Availability"
attribute. Multiple options are separated by semicolons.
JMP_Status_Improved, JMP_Status_Unimproved: Correspond to the "JMP Status"
aggregate attribute, split into separate columns for each option.

Data Validation and Integrity

User Feedback and Error Handling

Example CSV Template for Administration Data

Notes:

The template is designed to reflect the structure of the administrative hierarchy from
County to Village.
The columns for administrative levels are included, and each level is represented in its
own column.
Attributes are represented according to their types and names as provided.
The CSV format allows for flexibility in filling out the data, with some attribute fields being
optional.

Example process:

1. Initiating the Bulk Upload Task:
When a bulk upload is initiated, the async_task function is called.
The function is provided with the task name
'api.v1.v1_jobs.job.validate_administration_data' , which likely refers to a function
responsible for validating the uploaded administration data.

2. Passing Job ID to the Task:
Along with the task name, the job ID (job.id) is passed to the async_task function.
This job ID is used to associate the asynchronous task with the specific job record in
the Jobs table.

3. Task Execution and Hook:
The async_task function also receives a hook parameter, in this case,
'api.v1.v1_jobs.job.seed_administration_data' .
This hook is likely another function that is called after the validation task completes.
It's responsible for seeding the validated administration data into the database.

4. Task ID Generation:

Bulk Upload Process

from api.v1.v1_jobs.constants import JobTypes, JobStatus
from api.v1.v1_jobs.models import Jobs
from api.v1.v1_users.models import SystemUser

job = Jobs.objects.create(type=JobTypes.validate_administration,
 status=JobStatus.on_progress,
 user=request.user,
 info={
 'file': filename,
 })
task_id = async_task('api.v1.v1_jobs.jobs.validate_administration',
 job.id,
 hook='api.v1.v1_jobs.job.seed_administration')

The async_task function generates a unique task ID for the job. This task ID is used to
track the progress and status of the task.
The task ID is likely stored in the Jobs table, associated with the corresponding job
record.

5. Monitoring and Tracking:
With the task ID, administrators can monitor and track the status of the bulk upload
process.
The Jobs table provides a comprehensive view of each job, including its current
status, result, and any relevant information.

6. Error Handling and Notifications:
If the validation or seeding task encounters any errors, these are captured and
recorded in the Jobs table.
The system can be configured to notify administrators of any issues, allowing for
prompt response and resolution.

7. Completion and Feedback:
Once the bulk upload task is completed (both validation and seeding), its final status
is updated in the Jobs table.
Administrators can then review the outcome of the job and take any necessary
actions based on the results.

In the updated approach for seeding initial administration data, the shift from using TopoJSON to
Excel file format is being implemented. While TopoJSON has been the format of choice, particularly
for its geospatial data capabilities which are essential for visualization purposes, the move to Excel
is driven by the need for a more flexible and user-friendly data input method.

However, this transition introduces potential challenges in maintaining consistency between the
Excel-based administration data and the TopoJSON used for visualization. The inherent differences
in data structure and handling between these two formats could lead to discrepancies, impacting
the overall data integrity and coherence in the system. This change necessitates a careful
consideration of strategies to ensure that the data remains consistent and reliable across both
formats.

Data Format and Consistency: The shift to Excel might introduce inconsistencies with
the TopoJSON format, especially in terms of data structure and geospatial properties.
Data Validation: Robust validation is essential to mitigate errors common in Excel files.
Import Complexity: Managing complex Excel structures requires additional parsing
mechanisms.

Database Seeder
Administration Seeder

Key Considerations

Scalability and Performance: Excel's performance with large datasets and memory
usage should be monitored.
Security and Integrity: Increased risk of data tampering in Excel files, and challenges in
version control.
Automation and Workflow Integration: Adapting automation processes to
accommodate Excel's format variations.
User-Provided Data: Dependence on external data updates necessitates clear handling
policies.

File Naming Convention

Each Excel file represents a county.
File names follow the format: <county_id>-<county_name>.xlsx
Example: 101-Nairobi.xlsx , 102-Mombasa.xlsx

File Content Structure

Each file contains details of sub-counties and wards within the respective county.

Sub-County_ID Sub-County Ward_ID Ward

201 Westlands 301 XYZ

201 Westlands 302 ABC

...

Hard-coded National Level: The national level, Kenya, should be hard-coded in the
seeder.
Dynamic County Processing: The seeder dynamically processes each county file,
creating or updating records for sub-counties and wards.
File Processing Logic: The seeder reads the file name to determine the county and
iterates through each row to seed data for sub-counties and wards.

Administration IDs are available and consistent.
The attributes are stored in an Excel file, with a structure that includes administration IDs
and their corresponding attributes.

Excel File Structure for Seeder

Seeder Adaptation

Administration Attribute Seeder
Assumptions

Example Excel File Structure

Admin_ID Attribute1 Attribute2 ...

1 Value1 Value2 ...

2 Value1 Value2 ...

...

Note:

Seeder Script

import pandas as pd
from your_app.models import Administration, AdministrationAttribute

class AdministrationAttributeSeeder:
 def __init__(self, file_path):
 self.file_path = file_path

 def run(self):
 # Load data from Excel file
 df = pd.read_excel(self.file_path)

 # Iterate through each row in the DataFrame
 for index, row in df.iterrows():
 admin_id = row['Admin_ID']
 # Retrieve the corresponding Administration object
 administration = Administration.objects.get(id=admin_id)

 # Create or update AdministrationAttribute
 for attr in row.index[1:]: # Skipping the first column (Admin_ID)
 attribute_value = row[attr]
 AdministrationAttribute.objects.update_or_create(
 administration=administration,
 attribute_name=attr,
 defaults={'attribute_value': attribute_value}
)

 print("Administration attributes seeding completed.")

Usage
seeder = AdministrationAttributeSeeder('path_to_your_excel_file.xlsx')
seeder.run()

1. File Path: Replace 'path_to_your_excel_file.xlsx' with the actual path to the Excel file
containing the administration attributes, the excel files will be safely stored in
backend/source.

2. Model Structure: This script assumes the existence of Administration and
AdministrationAttribute models. Adjust the script according to your actual model names and
structures.

3. update_or_create : This method is used to either update an existing attribute or create a
new one if it doesn't exist.

4. Error Handling: Add appropriate error handling to manage cases where the
administration ID is not found or the file cannot be read.

The system needs to perform scheduled tasks periodically such as backups, report generation, and
so on. Cron expression is a familiar format used to configure scheduled tasks to run periodically.
Using the Cron expression in the Task Scheduler is the prefered approach.

Django Q has a feature to run scheduled tasks and can be used to implement the Task Scheduler.
With Croniter package it can support cron expression.

Use django settings to configure the Task Scheduler. Example:

The task attributes (func , cron) is a dictionary object representation of the Django Q schedule
parameters.

The Task Scheduler configuration must support adding new tasks, deleting tasks, and changing
task parameters. The command to synchronize configuration updates needs to be implemented.
This command will be run on Django startup to apply configuration changes.

Task Scheduler

Configuration

SCHEDULED_TASKS = {
 "task name" : {
 "func": "function_to_run",
 "cron": "* * * * *",
 "kwargs": {
 "hook": "post_function_to_run"
 }
 },
}

Configuration update synchronization

https://django-q.readthedocs.io/en/latest/schedules.html
https://github.com/kiorky/croniter
https://django-q.readthedocs.io/en/latest/schedules.html#reference
https://django-q.readthedocs.io/en/latest/schedules.html#reference

from django_q.models import Schedule

def sync_scheduled_tasks():
 schedules = get_setting_schedules()
 existing_schedules = list(Schedule.objects.all())
 actions = calculate_schedule_changes(schedules, existing_schedules)
 apply_sync_actions(actions)

class SyncActions:
 to_add: List[Schedule]
 to_modify: List[Schedule]
 to_delete: List[Schedule]

def get_setting_schedules() -> List[Schedule]:
 """
 Converts the schedules configuration in the app settings to django-q
 schedule objects
 """
 ...

def calculate_schedule_changes(
 schedules: List[Schedule], existing_schedules: List[Schedule]
) -> SyncActions:
 """
 Calculates the operations that have to be taken in order to sync the schedules
 in the settings with the existing schedules in the db
 """
 ...

def apply_sync_actions(actions: SyncActions):
 """
 Applies the operations required to sync the schedules in the settings with the
 schedules in the DB
 """
 ...

SQLite file generator

To achieve an entity type of question, we need to ensure that the question type is supported in
both web forms and mobile applications. We should consider the question format, ensuring
alignment with akvo-react-form, and verify that the attributes can be stored in the database. For
this case, we will use a type cascade with an additional attribute for further classification.

As mentioned earlier, we will use an extra attribute to manage existing cascade-type questions, if
the cascade type does not have extra attributes and not providing an API endpoint, then the entity
cascade will not work.

Implementing an API attribute for Entity Cascade is a significant enhancement aimed at improving
the functionality of web forms. This feature involves adding an API attribute at the question level
within a questionnaire and defining it as an object. The primary purpose of this object is to store
the API URL, which is crucial for enabling the Entity Cascade functionality. This should be done as
follows:

The format for the response can be found at the following URL:

https://raw.githubusercontent.com/akvo/akvo-react-form/main/example/public/api/entities/1/13

List of scheduled tasks

Entity Type of Question

How to Achieve Entity Type of Question

Handling Existing Cascade Type of Question

Provide API attribute for Entity Cascade

{
 "api": {
 "endpoint": "<API URL here>"
 }
}

https://github.com/akvo/akvo-react-form#supported-field-type
https://raw.githubusercontent.com/akvo/akvo-react-form/main/example/public/api/entities/1/13

Attribute Value

type "entity"
This aims to identify on the backend that we will use entity
table to filter entity data and send SQLite files to the
mobile app

name Use existing entity names and fill them exactly as they
are in the database to prevent data from not being
found

https://wiki.cloud.akvo.org/link/65#bkmrk-entities-table

parentId Set the question source ID to trigger a list of entities to
appear based on the answer to the question. If the
questionnaire is filled out via a Webform, the entities will
appear from the API response. The entities will appear
from the SQL query results if the questionnaire is filled out
via a Mobile app.

We need to modify the form details response by changing this file to retrieve the SQLite file based
on the extra type attribute

https://github.com/akvo/rtmis/blob/main/backend/api/v1/v1_forms/serializers.py#L322-L331

Extra attribute for Entity Cascade

Example

{
 "id": 67,
 "label": "School cascade",
 "name": "school_cascade",
 "type": "cascade",
 "required": false,
 "order": 7,
 "api": {
 "endpoint": "https://akvo.github.io/akvo-react-form/api/entities/1/"
 },
 "extra": {
 "type": "entity",
 "name": "School",
 "parentId": 5
 }
},

BACKEND changes

https://github.com/akvo/rtmis/blob/main/backend/api/v1/v1_forms/serializers.py#L322-L331

https://github.com/akvo/rtmis/blob/main/backend/api/v1/v1_forms/serializers.py#L198-L216

The backend response will be

for cascade_question in cascade_questions:
 if cascade_question.type == QuestionTypes.administration:
 source.append("/sqlite/administrator.sqlite")
 if (
 cascade_question.extra and
 cascade_question.extra.get('type') == 'entity'
):
 source.append("/sqlite/entity_data.sqlite")
 else:
 source.append("/sqlite/organisation.sqlite")
return source

def get_source(self, instance: Questions):
 user = self.context.get('user')
 assignment = self.context.get('mobile_assignment')
 if instance.type == QuestionTypes.cascade:
 if instance.extra:
 cascade_type = instance.extra.get("type")
 cascade_name = instance.extra.get("name")
 if cascade_type == "entity":
 # Get entity type by name
 entity_type = Entity.objects.filter(name=cascade_name).first()
 entity_id = entity_type.id if entity_type else None
 return {
 "file": "entity_data.sqlite",
 "cascade_type": entity_id,
 "cascade_parent": "administrator.sqlite"
 }
 # ... the rest of the code

{
 ...
 "source": {
 "file": "entity_data.sqlite",
 "cascade_type": 1,
 "cascade_parent": "administrator.sqlite"

https://github.com/akvo/rtmis/blob/main/backend/api/v1/v1_forms/serializers.py#L198-L216

Once the mobile application can read the entity SQLite file, we can execute a filtering query based
on the selected administration.

It should be able to load `entity_data.sqlite`.
It should be able to be filtered by cascade_type and the selected administration ID.
It should display the answer from the currentValues.
It should not be shown when the administration has not been selected.

We need to store the selected administration to quickly retrieve the parent of the entity cascade.
Once the administration is selected, the related entity list should be made available.

To achieve this, we can add a new global state called ` administration ` and set its value using the
onChange event in the TypeCascade component.

Add administration in global state forms
https://github.com/akvo/rtmis/blob/main/app/src/store/forms.js#L13

...
 prefilled: false,
 administration: null,
}

Set value `administration` in onChange event
https://github.com/akvo/rtmis/blob/main/app/src/form/fields/TypeCascade.js#L66-
L67

FormState.update((s) => {
 ...
 s.administration = source?.file === 'administrator.sqlite'
 ? finalValues
 : s.administration;
});

 }
}

Mobile Handler for Entity Type of Question

Test cases

Store selected administration

https://github.com/akvo/rtmis/blob/main/app/src/store/forms.js#L13
https://github.com/akvo/rtmis/blob/main/app/src/form/fields/TypeCascade.js#L66-L67
https://github.com/akvo/rtmis/blob/main/app/src/form/fields/TypeCascade.js#L66-L67

Change how the dropdown data is initialized by checking the cascadeParent from the source value. If
' cascadeParent ' exists, use it as a parameter to retrieve the selected administration as the parent
ID. Otherwise, obtain the parent from the 'parent_id' value.

To filter entity types, we can utilize the ' cascadeType ' property to display a list of relevant entities
with previously defined extra attributes. The implementation will look as follows:

https://github.com/akvo/rtmis/blob/main/app/src/form/fields/TypeCascade.js#L115-L134

The Sub-County or Ward PHO opens a Grade Determination process by claiming that a community
has reached a G level. A team is assembled to collect data in all households and at the community
level. The collected data is associated with the Grade Determination process, i.e. it is not stored
alongside the routine data. Specific questions could be added to the Community form to reinforce
the accountability of PHOs in claiming a grade. Ex:

Modify initial cascade

const parentIDs = cascadeParent === 'administrator.sqlite' ? prevAdmAnswer || [] : parentId || [0];
const filterDs = dataSource
 ?.filter((ds) => {
 if (cascadeParent) {
 return parentIDs.includes(ds?.parent);
 }
 return (
 parentIDs.includes(ds?.parent) ||
 parentIDs.includes(ds?.id) ||
 value?.includes(ds?.id) ||
 value?.includes(ds?.parent)
);
 })
 ?.filter((ds) => {
 if (cascadeType && ds?.entity) {
 return ds.entity === cascadeType;
 }
 return ds;
 });

Grade Determination Process

Grade Claim

https://github.com/akvo/rtmis/blob/main/app/src/form/fields/TypeCascade.js#L115-L134

Confirm that the grade claim criteria are achieved.
Confirm that all households have been visited.

The collected data does not need to go through the data approval workflow the routine data is
subject to. Based on the collected data, the Sub-County or Ward the PHO can decide to submit the
claim for approval to the Sub-County PHO or to cancel it.

The platform computes and displays the % completion of the data collection activity associated
with the Grade Determination process (the number of households of a community - denominator -
is collected in the community form). A % completion below 100% does not prevent the Sub-County
or Ward the PHO from submitting the claim for approval.

Features

User is able to create a Grade Determination Process
User is able to collect data that goes to a different bucket
User is able to see browse data associated with the Grade Determination Process

Claim certification is done by doing another round of data collection on a sampled number of
households per candidate communities. The collected data does not need to go through the data
approval workflow the routine data is subject to. The collected data goes to a different bucket than
the routine data. The data collection is performed by staff of a different Sub-County a community
belongs to. The data collection is done in batches: a team will plan and perform the data collection
for multiple communities. The County PHO is in charge of creating the batches and to assign them
to the Sub-County PHO that will later put together a team of data collectors. Candidate
Communities are expected to be assigned to a batch within two months of being approved for the
certification process.

Specific sampling rules apply:

50%-100% of at-risk households should be sampled, with a minimum sample of 20
new/at-risk households (or 100% of at-risk households where fewer than 20)
30%-100% of other households should be sampled, with a minimum sample of 30 other
households (or 100% of other households where fewer than 30)

Based on the data collected, the County PHO can decide to:

Certify a community - The community is then flagged for the requested grad. This ends
the Grade Determination Process.
Fail the certification - The Grade Determination Process ends.

The users are able to see the outcomes for which the targeted level was not reached in order to
provide feedback to the community.

Claim Certification

Features

The user is able to confirm the certification
The user is able to to create batches of Candidate Communities and assign them to a Sub-
County user
The Sub-County user is able to assign the Candidate Communities to specific
enumerators.
User is able to collect data that goes to a different bucket

Revision #71
Created 1 October 2023 23:35:47 by Deden Bangkit
Updated 14 June 2024 08:38:26 by Iwan Firmawan

