
National Management Information System (NMIS) Mobile, a groundbreaking application developed
by Tech Consultancy Team using JavaScript and React Native. This state-of-the-art app offers a
robust solution for data collection across various services.

The NMIS app is built upon JavaScript and harnesses the versatility of React Native, enabling
seamless cross-platform development. By utilising the feature flag parameter, the app can be
easily transformed into an Android APK, offering users a wide array of customisation options and
features.

The feature flag parameter plays a pivotal role in configuring the app's behaviour. It empowers
administrators to selectively enable or disable specific features based on their requirements, define
various authentication methods to enhance security, customise themes to align with organisational
branding, set server URLs for seamless integration, and even specify different types of questions
within forms to capture precise information.

This exceptional level of configurability ensures that the NMIS app can be adapted as a generic
module for diverse services. Regardless of the sector, whether it's healthcare, education, public
services, or any other domain, the NMIS app offers a flexible and scalable solution for efficient and
standardised data collection.

With its user-friendly interface, intuitive design, and advanced integration capabilities, the Mobile
App for National Management Information System (NMIS) sets a new standard in data collection
and management. By prioritising data accuracy, efficiency, and accessibility, this app empowers
organisations to streamline their information-gathering processes and make informed decisions.

The purpose of the NMIS mobile app is to provide enumerators in the field with a user-friendly and
efficient tool for data collection, complementing the existing web form in the web application. The
app is specifically designed to streamline data collection processes, enhance accessibility, and
overcome limitations associated with web forms.

The key purposes of the NMIS mobile app include:

Low Level Design

Introduction
About NMIS App

The Purpose of NMIS App

1. Simplified Data Collection: The app aims to simplify the data collection process for
enumerators by providing an intuitive and mobile-optimised user interface. It allows
enumerators to collect data in a straightforward and efficient manner, reducing the
complexities associated with web forms.

2. Offline Data Collection: A crucial purpose of the app is to enable offline data collection.
Enumerators can capture data even in areas with limited or no internet connectivity. The
app securely stores the collected data locally on the device, ensuring data integrity and
allowing for seamless synchronisation when an internet connection is available.

3. Improved Efficiency: The NMIS mobile app enhances the efficiency of data collection in
the field. It eliminates the need for enumerators to rely solely on web forms accessed
through browsers, which may involve additional login procedures or restricted access. The
app provides a dedicated platform for enumerators, ensuring a smoother and faster data
collection experience.

4. Streamlined Field Operations: By leveraging mobile-specific features, such as GPS
integration for location tracking, the app streamlines field operations. Enumerators can
efficiently capture geographical data alongside other relevant information, improving the
accuracy and context of collected data.

5. Enhanced User Experience: The NMIS mobile app focuses on delivering an optimal user
experience for enumerators. It leverages mobile devices' capabilities, such as touch
gestures and responsive layouts, to provide a seamless and intuitive interface. This
purposeful design promotes ease of use and reduces the learning curve for enumerators
in the field.

In summary, the NMIS mobile app's purpose is to facilitate efficient and user-friendly data
collection for enumerators in the field. It enhances accessibility, enables offline capabilities, and
improves overall efficiency in capturing accurate and timely data.

The NMIS mobile app offers a comprehensive range of functionalities tailored to support
enumerators in their data collection tasks. This section provides a functional overview of the key
features and capabilities of the app. With support for various question types, optional dependency
logic, validation rules, offline data collection, seamless synchronisation, JSON form format, and a
user-friendly interface, the app empowers enumerators to collect data accurately, efficiently, and
conveniently in the field.

Enumerators can access and complete customised data collection forms using the app.
These forms are designed to capture various types of information, including geolocation,
text, number, options, multiple options, cascade, photo/video, and date.
The app provides an intuitive interface for enumerators to input data based on the
question type. Enumerators can provide accurate and precise information during the data

Functional Overview

Data Collection Forms

collection process.

The app supports optional dependency logic, enabling dynamic display and requirement
of questions based on responses to previous questions. This functionality enhances the
data collection experience by adapting the form based on specific conditions or
dependencies.
Enumerators can seamlessly navigate through the form, with the app intelligently
adjusting the display of questions based on the predefined dependencies. This ensures a
smooth and efficient data collection process.

The app incorporates validation rules to ensure data accuracy and integrity. Real-time
validation feedback is provided to enumerators, such as error messages or prompts for
missing or invalid data.
Enumerators receive immediate feedback, ensuring that data entered meets the specified
criteria and reducing the likelihood of errors. This promotes data quality and reliability.

Enumerators can collect data even in offline environments, leveraging the app's offline
functionality.
The app securely stores the collected data on the device, allowing enumerators to
continue their work without an internet connection.
Once an internet connection is available, the app automatically synchronises the collected
data with the central server.

The app seamlessly synchronises collected data with the central server once an internet
connection is available. This ensures that no data is lost during the process.
Enumerators can trust that their data is securely transmitted and integrated into the NMIS
system. Synchronisation happens in the background, allowing enumerators to focus on
their data collection tasks without worrying about manual data transfer.

The app receives the data collection forms in JSON format.
The JSON structure follows the format used in the Akvo React Form, which used by the
Burkina Faso PDHA, WAI-SDG, ISCO or Kenya RTMIS Web Page.
Enumerators can easily navigate and interact with the forms within the app, as the JSON
structure provides a familiar format. This simplifies the transition from the web form to the
mobile app and ensures a consistent data collection experience.

Optional Dependency Logic

Validation Rules

Offline Data Collection

Seamless Synchronisation

JSON Form Format

https://www.npmjs.com/package/akvo-react-form
https://washmis-burkina.akvotest.org/
https://wai-sandbox.akvotest.org/
https://isco.akvotest.org
https://rtmis.akvotest.org

The app offers a user-friendly interface designed specifically for mobile devices. It
prioritises ease of use and intuitive navigation, optimised for the smaller screens and
touch gestures of smartphones and tablets.
Enumerators can efficiently navigate through the forms, input data, and access various
features. The intuitive interface reduces training requirements and contributes to a
seamless and pleasant data collection experience.

The functional overview of the NMIS mobile app highlights its robust capabilities in supporting
enumerators during data collection activities. With support for various question types, optional
dependency logic, validation rules, and the ability to handle JSON forms, the app provides a
powerful tool that enhances the efficiency, accuracy, and convenience of field data collection
processes.

When designing the NMIS mobile app, several key considerations were taken into account to
ensure a seamless and user-friendly experience for enumerators in the field. The following design
principles guided the development process:

1. Mobile-Optimised Interface: The app's interface is specifically designed for mobile
devices, prioritising ease of use and intuitive navigation. It takes into account the limited
screen space and touch interactions of smartphones and tablets, ensuring a seamless
user experience for enumerators.

2. Offline Functionality: Recognising the potential lack of internet connectivity in remote
areas, the app includes robust offline capabilities. Enumerators can collect data without
an active internet connection, and the app securely stores the data locally on the device.
Once a connection is available, the app automatically synchronises the collected data with
the central server.

3. Responsive and Adaptive Design: The app features a responsive and adaptive design,
adjusting its layout and functionality based on the screen size and orientation of different
devices. This ensures optimal presentation and usability, regardless of the device used by
enumerators.

4. Clear and Intuitive Form Design: The design of data collection forms prioritises clarity
and simplicity. Questions are presented in a logical and easy-to-understand manner,
reducing cognitive load for enumerators and enabling efficient data entry.

5. Visual Feedback and Validation: The app provides visual feedback and validation to
guide enumerators during data collection. Real-time validation checks highlight errors or
missing information, ensuring the accuracy and completeness of collected data. Clear
visual cues and informative prompts assist enumerators in providing accurate and valid
responses.

User-Friendly Interface

Design Considerations

6. Streamlined Navigation: The app features streamlined navigation, allowing
enumerators to move through the data collection process effortlessly. Intuitive icons,
buttons, and gestures provide smooth transitions between questions and sections,
reducing friction and improving efficiency.

7. Accessibility Considerations: The app adheres to accessibility guidelines to ensure
inclusivity for all users. It incorporates features such as adjustable text size, colour
contrast for readability, and support for assistive technologies. By prioritising accessibility,
the app promotes equal access and usability for individuals with diverse needs.

8. Security and Data Privacy: Data security and privacy are paramount considerations in
the app's design. The app incorporates robust security measures to protect collected data,
including encryption during transmission and adherence to industry best practices.
Enumerators can trust that the data they collect is handled securely and confidentially.

The design in the provided Figma link represents the user journey and interface design of the
mobile module for the NMIS app based on the discussions held during the planning phase. It
showcases the layout, interaction, and visual elements to ensure a seamless and user-friendly
experience for enumerators during the data collection process. Here's an overview of what the
design entails:

1. User Journey: The Figma design depicts the step-by-step user journey, outlining the
different screens and actions involved in the data collection process. It provides a visual
representation of how users will navigate through the app, from entering the assignment
code to selecting a survey, answering questions, and submitting the form.

2. Interface Design: The design showcases the visual elements, including the layout, color
scheme, typography, and graphical representations used throughout the app. It offers a
glimpse into the overall look and feel, ensuring a consistent and intuitive user experience.

3. Screen Layout: Each screen in the user journey is represented, illustrating the
arrangement of elements, such as buttons, input fields, navigation components, and form
sections. The layout is designed to optimise user interaction, ensuring ease of use and
clear information presentation.

4. Interactive Components: The Figma design may include interactive components, such
as clickable buttons, dropdown menus, and modals. These elements demonstrate the
expected behavior and user interactions, providing a sense of how the app will respond to
user inputs.

5. Feedback and Iteration: The design is a result of several planning discussions,
indicating that it has gone through iterations and feedback from stakeholders and the
development team. It reflects the collaborative effort to align on the app's visual design

UI Design Overview
Design can be found in: NMIS - Mobile App Design V2

https://www.figma.com/file/gFCAgrblItKsGkONiGu7Ij/Mobile-App?type=design&node-id=73-99&t=fN7E0ATQQVpPLEMF-0

and user flow.

During the development and build phase of the NMIS mobile app, the server URL parameter is used
to specify the default endpoint or API URL of the NMIS server. This URL is typically determined by
the development team based on the specific deployment environment (e.g., development, staging,
production). By providing the server URL as a build parameter, the app is pre-configured with the
appropriate endpoint to communicate with the NMIS server. This ensures that the built app
connects to the correct server once it is installed and launched on users' devices.

The server URL parameter in the build process ensures that the app is ready to establish a
connection with the designated NMIS server by default. This allows enumerators or users to
seamlessly interact with the server without having to manually input or configure the server URL
during the initial setup of the app.

During the build process of the NMIS mobile app, developers can include a "Debug Mode" build
parameter to control the activation of a dedicated mode designed to assist in debugging and
troubleshooting issues during app development.

1. Debugging Capabilities: When the app is in Debug Mode, developers gain access to
additional tools and capabilities for troubleshooting and identifying potential issues. This
includes features such as enhanced logging, detailed error messages, runtime inspection,
and the ability to set breakpoints for stepping through the code.

2. Enhanced Logging: Debug Mode often includes more extensive logging capabilities,
providing developers with a detailed view of the app's internal workings. This helps in
tracking the execution flow, identifying errors, and understanding the sequence of events
leading up to specific issues.

3. Diagnostic Information: Debug Mode allows developers to collect and analyze
diagnostic information, such as variable values, stack traces, and system-level details.
This information is instrumental in identifying the root causes of errors or unexpected
behavior, facilitating efficient bug fixing.

4. Real-time Feedback: Debug Mode enables real-time feedback during app development.
Developers can observe the app's behavior, identify potential issues, and make

Software Architecture
Build Configuration Parameters
Server URL

Debug Mode

immediate adjustments or corrections, improving the efficiency of the debugging process.
5. Controlled Environment: Debug Mode provides a controlled environment for developers

to test and troubleshoot app features and functionality. It allows them to isolate and focus
on specific parts of the app, enabling effective debugging and minimising interference
from external factors.

6. Development Workflow: Debug Mode supports an iterative development workflow.
Developers can make changes, test them, debug issues, and refine their code until the
desired functionality is achieved. This iterative approach helps in improving the overall
quality and reliability of the app.

This parameter ensures that the app is running on the correct version by specifying the version
number or code. It helps in maintaining compatibility and consistency between the app and the
server, ensuring seamless functionality and data syncing.

App Version Control is essential for maintaining a structured and organised approach to app
development, deployment, and updates. It involves assigning unique version numbers or codes to
each release of the app, allowing users to identify, track, and manage different versions effectively.

Key aspects of App Version Control include:

1. Version Numbering: App developers assign version numbers to each release of the app.
Version numbers typically follow a structured format, such as X.Y.Z, where X represents a
major version, Y denotes a minor version, and Z signifies a patch version. This numbering
scheme provides a systematic way to indicate the significance of changes and updates.

2. Release Management: App Version Control helps manage the release process by
distinguishing between major updates, minor feature enhancements, and bug fixes. Each
version represents a distinct set of changes and serves as a reference point for
development, testing, and deployment.

3. Compatibility and Upgrades: Version control allows users to determine whether their
installed app version is compatible with the server or requires an update. It helps ensure
that users are running the correct version that aligns with the server's capabilities and
data structures.

4. Bug Tracking and Issue Resolution: Version control plays a crucial role in bug tracking
and issue resolution. By referring to specific app versions, developers can identify when
bugs were introduced, track fixes, and provide relevant updates to users. It facilitates
efficient communication and collaboration among development teams, testers, and users.

5. User Support and Communication: Version control helps streamline user support by
enabling precise identification of the app version in use. Users can easily communicate
their installed version when reporting issues, allowing support teams to provide targeted
assistance and troubleshoot problems effectively.

More about debugging: https://reactnative.dev/docs/debugging

App Version Control

https://reactnative.dev/docs/debugging

6. Feature Rollouts and A/B Testing: App Version Control facilitates controlled feature
rollouts and A/B testing. Developers can release new features gradually, targeting specific
app versions, user groups, or geographic regions. This approach allows for better
evaluation of feature performance and user feedback before widespread deployment.

Below are the build parameter formats:

authenticationType: an array that includes multiple options: code_assignment,
username, and password. This configuration allows users to choose one or more
authentication methods based on their requirements.This reflects the optional nature of
the authentication types and allows for flexibility in selecting authentication methods,
including the use of a code assignment before entering a username (with or without a
password). It also considers the scenario where multiple enumerators can utilise a single
app, accommodating projects with limited budgets for purchasing individual devices.
serverURL: Specifies the endpoint or API URL of the NMIS server as
https://nmis.akvotest.org/api.
debugMode: Indicates that debug mode is disabled with a value of false.
dataSyncInterval: Defines the default data sync interval as 300 seconds (5 minutes).
errorHandling: Specifies that error handling is enabled with a value of true.
loggingLevel: Sets the logging level to verbose.
appVersion: Represents the version number of the app as 1.2.0.
lang: Defines the default language for the UI components and Forms.

The app configuration settings parameter provides a range of customisable options which already
defined in Build Parameters. It allows users to tailor the app's behavior and appearance according
to their specific preferences.

1. Data Sync Options: Data syncing options allow users to configure how and when the
app synchronise data with the server. Users can choose to enable or disable automatic

Build Parameters

{
 "authenticationType": ["code_assignment", "username", "password"],
 "serverURL": "https://api.example.com/nmis",
 "debugMode": false,
 "dataSyncInterval": 300,
 "errorHandling": true,
 "loggingLevel": "verbose",
 "appVersion": "1.2.0",
 "lang": "en",
}

App Configuration Settings

syncing, specify Wi-Fi-only syncing, or define the sync interval, giving them control over
the data transfer process.

2. Data Sync Interval: The Data Sync Interval configuration setting allows users or
enumerators to define the frequency at which the NMIS mobile app automatically syncs
data with the server. This setting can be adjusted within the app's user interface or
settings menu, providing flexibility for users to tailor the sync interval according to their
specific needs and preferences.

3. Language Selection: Language selection settings enable users to choose their preferred
language for the app's interface. This feature ensures that the app is accessible to users
who are more comfortable with languages other than the default language.

We utilise the pullstate library for managing the state of the NMIS mobile app. pullstate is a
lightweight state management library for React applications that provides a simple yet powerful
solution for managing application state. With pullstate, we can easily define and update our
application's state using custom stores and actions. The library follows a "pull-based" approach,
where components explicitly "pull" the data they need from the state, ensuring efficient rendering
and minimising unnecessary re-renders.

By using pullstate for state management in the NMIS mobile app, we can achieve the following
benefits:

1. Lightweight and Minimalistic: pullstate is a small and focused library, which means it
doesn't introduce unnecessary complexity or overhead to our application. It provides a
clean and concise API for managing state.

2. Predictable and Immutable State: pullstate encourages immutability by default. This helps
maintain the predictability of the state and simplifies debugging by preventing accidental
mutations.

3. Efficient Rendering: The "pull-based" approach of pullstate ensures that only the
components that directly depend on a specific piece of state will re-render when that state
changes. This avoids unnecessary re-renders in the application and improves
performance.

4. Easy to Use and Understand: pullstate follows a straightforward API design, making it easy
to grasp and integrate into our existing React components. It promotes a declarative and
functional programming style, enhancing the readability and maintainability of our
codebase.

By leveraging the pullstate library for state management, we can efficiently manage and update
the application's state, ensuring a smooth and responsive user experience in the NMIS mobile app.

State Management
State Management Library

Documentation: https://lostpebble.github.io/pullstate/

https://lostpebble.github.io/pullstate/

Example use of Pullstate:

import { Store } from "pullstate";

export const UIStore = new Store({
 isDarkMode: true,
});

import * as React from "react";
import { UIStore } from "./UIStore";

export const App = () => {
 const isDarkMode = UIStore.useState(s => s.isDarkMode);

 return (
 <div
 style={{
 background: isDarkMode ? "black" : "white",
 color: isDarkMode ? "white" : "black",
 }}>
 <h1>Hello Pullstate</h1>
 <button
 onClick={() =>
 UIStore.update(s => {
 s.isDarkMode = !isDarkMode;
 })
 }>
 Toggle Dark Mode
 </button>
 </div>
);
};

App Configuration State

const appConfiguration = {
 authentication: {
 authenticationType: ["assesment", "username_password"],
 serverURL: "https://api.example.com/nmis",
 authenticationCode: "",

DRAFT

We use the database to store something that stays in the application without any changes, for
example: forms, submissions and personal configurations. To achieve this, we need a library that is
natively easy to use and persisted across restarts. Expo-sqlite gives the app access to a database
that can be queried through a WebSQL-like API. See the following example:

 },
 buildParams: {
 debugMode: false,
 dataSyncInterval: 300,
 errorHandling: true,
 loggingLevel: "verbose",
 appVersion: "1.2.0"
 },
 formConfiguration: {
 form: {},
 questionGroups: [],
 questions: []
 },
 userConfiguration: {
 username: "",
 password: "",
 preferences: {}
 },
 currentPage: "Home"
};

Database
Database Library

import { Platform } from 'react-native';
import * as SQLite from 'expo-sqlite';

/*Init DB*/

const openDatabase = () => {
 if (Platform.OS === 'web') {
 return {
 transaction: () => {

 return {
 executeSql: () => {},
 };
 },
 };
 }
 const db = SQLite.openDatabase('db.db');
 return db;
};

const db = openDatabase();

db.transaction((tx) => {
 tx.executeSql('\
 create table if not exists examples(\
 id integer primary key not null,\
 name text,\
 example_float real,\
 example_json text\
);'
);
});

/*Query*/

const addData ='\
 insert into examples\
 (name, example_float, example_json) \
 values (?, ?, ?)';

const getAllData = 'select * from examples';

db.transaction((tx) => {
 tx.executeSql(addData, [text, number, JSON.stringify(['Devin', 'Dan', 'Dominic'])]);
 tx.executeSql(getAllData, [], (_, { rows }) =>
 console.log('examples: ', JSON.stringify(rows)),
);
 },
 null,
 forceUpdate,

There are 4 tables that need to be created to store activities that remain even if the application is
restarted. These tables are:

1. Users

Table name: users

Column Name Type Example

id INTEGER (PRIMARY KEY) 1

active TINYINT 1 (default: 0)

name INTEGER 1

password TEXT crypto

2. Config

Table name: config

Column Name Type Example

appVersion INTEGER 1

authenticationCode TEXT crypto

serverURL TEXT 'https://rtmis.akvo.org'

syncInterval REAL 3 (in Minutes)

syncWifiOnly TINYINT 1

lang VARCHAR(255) "en"

3. Form List

Table name: forms

Column Name Type Example

id INTEGER (PRIMARY KEY) 1

);

Documentation: https://docs.expo.dev/versions/latest/sdk/sqlite/

Database Schema

https://docs.expo.dev/versions/latest/sdk/crypto/
https://docs.expo.dev/versions/latest/sdk/crypto/
https://docs.expo.dev/versions/latest/sdk/sqlite/

Column Name Type Example

formId INTEGER 453743523

version VARCHAR(255) "1.0.1"

latest TINYINT 1

name VARCHAR(255) 'Household'

json TEXT See: Example JSON Form

createdAt DATETIME new Date().toISOString()

4. Form Submission / Datapoints

Table name: datapoints

Column Name Type Example

id INTEGER (PRIMARY KEY) 1

form INTEGER 1 (represent id in forms table, NOT
formId)

user INTEGER 1

name VARCHAR(255) 'John - St. Maria School - 0816735922'

submitted TINYINT 1

duration REAL 45.5 (in Minutes)

createdAt DATETIME new Date().toISOString()

submittedAt DATETIME new Date().toISOString()

syncedAt DATETIME new Date().toISOString()

json TEXT '{"question_id": "value"}'

The provided code snippet showcases the implementation of a navigation structure using React
Navigation for a React Native app. NavigationContainer (imported from @react-navigation/native)
and acts as the root component navigation, while the createNativeStackNavigator (imported
from @react-navigation/native-stack) function is utilized to create a stack navigator. Each screen is
defined using the Stack.Screen component, and the screenOptions prop is utilized to hide the

Navigating Between Components

https://reactnavigation.org/
https://reactnavigation.org/

header for all screens. The Navigation component wraps the navigation elements, facilitating the
seamless navigation between screens using the provided navigation methods.

To navigate between screens: navigation.navigate('Home')

We will utilise the pullstate library for managing the state of the NMIS mobile app. The provided
page layouts serves as a configuration that allows for dynamic rendering of page components
based on specific values.

All the corresponding Page components should be placed under ./src/pages

import { HomePage, FormActionPage, FormDataPage } from '../pages';

const Stack = createNativeStackNavigator();

const RootNavigator = () => {
 return (
 <Stack.Navigator screenOptions={{ headerShown: false }}>
 <Stack.Screen name="Home" component={HomePage} />
 <Stack.Screen name="AppSetting" component={AppSettingPage} />
 ...
 ...
 ...
 <Stack.Screen name="FormData" component={FormDataPage} />
 <Stack.Screen name="FormAction" component={FormActionPage} />
 </Stack.Navigator>
);
};

const Navigation = (props) => {
 return (
 <NavigationContainer {...props}>
 <RootNavigator />
 </NavigationContainer>
);
};

Documentation: https://reactnavigation.org/docs/getting-started

Base Layout Components

https://reactnavigation.org/docs/getting-started

1. Title: Displayed at the top of the page to provide a descriptive heading.

List of Cards Layout

{
 title: "Household - Submitted",
 columns: 1 | 2,
 search: {
 placeholder: "Search Datapoints" | "Search Form",
 show: true | false,
 },
 action: () => {
 navigation.navigate('Other Page', {
 id: '23445'
 })
 },
 data: [{
 id: 23445,
 name: "Datapoint Name",
 subtitles: [
 "created: 23 Jan 2023",
 "survey duration: 1hr 32m",
]
 }]
}

https://wiki.cloud.akvo.org/uploads/images/gallery/2023-06/ajxAGZ8HNQ7J4kuz-01-nmis-layout-base.png

2. Columns: Determines the layout of the data section, with options for 1 or 2 columns.
3. Search:

Placeholder: Specifies the text to display inside the search input field, such as
"Search Datapoints" or "Search Form".
Show: Determines whether the search input field should be displayed or hidden.

4. Action: Defines a navigation action to be triggered when a specific action is performed,
such as clicking a button. The action can navigate to another page, passing relevant
parameters, such as the ID of '23445' to the 'Other Page'.

5. Data: Represents an array of data objects to be displayed on the page.
id: Unique identifier for each data object.
name: Specifies the name of the datapoint.
subtitles: An array of subtitles or additional information related to the datapoint,
such as the creation date and survey duration.

The NMIS mobile app utilises JSON as the format for representing form structures and
configurations. To ensure consistency and compatibility with existing form APIs, the app follows the
format established by Akvo React Form. This allows for seamless integration with other form-
related services and promotes interoperability across different platforms.

By adhering to the Akvo React Form structure, the NMIS app can leverage the functionalities
provided by libraries like Formik, which is commonly used for form management in React
applications. Formik simplifies the process of handling form inputs, validation, and submission by
providing a standardised approach.

To map the JSON form structure to a format compatible with Formik, the NMIS app employs a
mapping mechanism that transforms the JSON representation into a structure that Formik can
readily work with. This mapping process ensures that the form data can be seamlessly handled
within the app, facilitating smooth data entry, validation, and submission processes.

Akvo React Form

Repository https://github.com/akvo/akvo-react-form

The Action navigator uses the native APIs: Fragment on Android so that navigation built
with createNativeStackNavigator will behave the same and have the same performance
characteristics as apps built natively on top of those APIs.

Form Layout

To ensure consistency and compatibility with the Akvo React Form structure, the NMIS
mobile app utilises a similar JSON format for representing form structures and
configurations. Here is an example JSON format that can be used as a reference.

https://akvo.github.io/akvo-react-form/
https://formik.org/
https://github.com/akvo/akvo-react-form
https://reactnative.dev/docs/navigation
https://raw.githubusercontent.com/akvo/akvo-react-form/main/example/src/example.json

Website https://akvo.github.io/akvo-react-form/

Documentation https://github.com/akvo/akvo-react-
form/blob/main/README.md

Example JSON Format https://raw.githubusercontent.com/akvo/akvo-react-
form/main/example/src/example.json

Formik

Repository https://github.com/jaredpalmer/formik

Website https://formik.org

Documentation https://formik.org/docs

Example JSON Form

{
 "id": 519630048,
 "form": "Citizen",
 "version": "1.0.0",
 "languages": ["en", "id"],
 "defaultLanguage": "en",
 "translations": [
 {
 "name": "Penduduk",
 "language": "id"
 }
],
 "question_group": [
 {
 "name": "Registration",
 "order": 1,
 "translations": [
 {
 "name": "Registrasi",
 "language": "id"
 }
],
 "question": [
 {
 "id": 1,

https://akvo.github.io/akvo-react-form/
https://github.com/akvo/akvo-react-form/blob/main/README.md
https://github.com/akvo/akvo-react-form/blob/main/README.md
https://raw.githubusercontent.com/akvo/akvo-react-form/main/example/src/example.json
https://raw.githubusercontent.com/akvo/akvo-react-form/main/example/src/example.json
https://github.com/jaredpalmer/formik
https://formik.org
https://formik.org/docs

name: Specifies the name of the form, which in this case is "Health Center Facilities".
languages: Represents an array of languages supported by the form, including "en"
(English) and "id" (Indonesian).
defaultLanguage: Indicates the default language for the form, which is set to "en"
(English).
translations: Contains an array of translations for the form's name. In this example, it
includes a translation for the name in Indonesian as "Fasilitas Kesehatan".

 "name": "Weight",
 "order": 1,
 "type": "number",
 "required": true,
 "tooltip": {
 "text": "Information Text"
 },
 "rule": {
 "min": 5,
 "max": 10
 },
 "meta": true,
 "dependency": [
 {
 "id": 9,
 "options": ["Yes"]
 },
 {
 "id": 10,
 "min": 8
 }
],
 "translations": [
 {
 "name": "Berat Badan",
 "language": "id"
 }
]
 }
]
 }
]
}

question_group: Represents an array of question groups within the form.
name: Specifies the name of the question group, which is "Registration".
order: Indicates the order or position of the question group within the form.
translations: Contains an array of translations for the question group's name. In
this example, it includes a translation for the name in Indonesian as "Registrasi".
question: Represents an array of questions within the question group.

id: Specifies the unique identifier for the question.
name: Represents the name of the question, which in this case is "Weight".
order: Indicates the order or position of the question within the question
group.
type: Specifies the type of question, which is "number" in this example.
required: Indicates whether the question is required or not.
tooltip: Contains information about a tooltip associated with the question,
such as additional instructions or details.

text: Specifies the text for the tooltip associated with the question.
rule: Represents a validation rule for the question, such as minimum and
maximum values.

min: Specifies the minimum value allowed for the question.
max: Specifies the maximum value allowed for the question.

meta: Indicates whether the question collects metadata information for data
point name.
dependency: Represents an array of dependencies for the question, indicating
its visibility or validation rules based on the values of other questions.

id: Specifies the ID of the question that the current question depends on.
options: Specifies the specific options that need to be selected in the
dependent question for the current question to be visible or valid.
min: Specifies the minimum value that needs to be entered in the
dependent question for the current question to be visible or valid.

translations: Contains an array of translations for the question's name. In this
example, it includes a translation for the name in Indonesian as "Berat Badan".

The below tree will show the hierarchy of Form Components structure:

Form Components
Components Structure

/src/form/
├── components
│ ├── index.js
│ ├── QuestionField.js
│ ├── QuestionGroup.js
│ └── Question.js
├── fields

The form components are located in the ./src/form/ directory, which is further divided into four
subfolders: components, fields, lib, and support. The main file that serves as the entry point for
the form component is FormContainer.js.

1. Components Folder:
The components folder contains three main component files: QuestionGroup.js,
Question.js, and QuestionField.js. Each file is responsible for rendering question groups,
questions, and fields based on the JSON form.

2. Fields Folder:
The fields folder contains files that manage the input for each supported question type.
These files, such as TypeDate.js, TypeImage.js, TypeInput.js, etc., control the behavior of
the QuestionField component.

3. Lib Folder:
The lib folder houses reusable functions that are utilized by other components within the
form.

4. Support Folder:
The support folder consists of reusable components that are used by other form

│ ├── index.js
│ ├── __test__
│ ├── TypeDate.js
│ ├── TypeImage.js
│ ├── TypeInput.js
│ ├── TypeMultipleOption.js
│ ├── TypeNumber.js
│ ├── TypeOption.js
│ └── TypeText.js
├── lib
│ └── index.js
├── support
│ ├── FieldGroupHeader.js
│ ├── FieldLabel.js
│ ├── FormNavigation.js
│ ├── index.js
│ └── __test__
├── FormContainer.js
├── index.js
├── initial-values.json
├── example-form.json
├── styles.js
└── __test__

components. It includes components like FieldGroupHeader.js, FieldLabel.js, and
FormNavigation.js.Supported Field Type

Type Description

input Normal/short text input

number Number input

text Long text input

date Date picker

option Single select option (radio/dropdown)

multiple_option Multiple select options (checkbox/dropdown)

image Image picker (from gallery/use camera)

Parameter Description

forms The forms parameter defines the structure and behavior of
the form based on an example JSON Form. It serves as a
blueprint for rendering the form and its fields.

initialValues The initialValues parameter sets the initial values for each
field when the form is first loaded. These values provide
pre-filled data or placeholders, enhancing the user
experience. By default is an empty object {}.

Event Description

Supported Field Type

Form Parameters

Form Events

onSubmit onSubmit event returns data point name, geo location, and
a set of values representing the answers provided for each
question field. These values are returned as an object,
where each question's ID serves as the object key, and its
corresponding answer value is stored as the value. For
example, the object may look like this:

{
 'name': 'Datapoint name',
 'geo': 'lat|long',
 'answers': [
 {
 '1': 'John',
 '2': 1992-01-01T00:00:00.000Z,
 '3': '31',
 '4': ['Male'],
 '5': ['Bachelor'],
 '6': ['Traveling'],
 '7': ['Rendang'],
 '9': '8.9'
 }
]
}

The Form component relies on the powerful features provided by Formik and Yup to handle form
validation efficiently. These libraries work together to validate user input and ensure data integrity.

Within the Form component, the validation schema is constructed at the question level. This means
that each question in the form has its own validation rules and constraints defined by the
generated schema.

To handle the generation of the validation schema, a dedicated function called
generateValidationSchemaFieldLevel is implemented. This function is located in the
./src/form/lib/index.js file.

By structuring the validation schema generation in this way, the Form component achieves a high
level of flexibility and maintainability. Each question can have its own unique validation rules,
allowing for granular control over the form's validation process.

generateValidationSchemaFieldLevel function:

Form Validation

export const generateValidationSchemaFieldLevel = (currentValue, field) => {
 const { name, type, required, rule } = field;
 let yupType;
 switch (type) {
 case 'number':
 // number rules
 const isEmpyCurrentValue = currentValue === '';
 yupType = isEmpyCurrentValue ? Yup.string() : Yup.number();
 if (!isEmpyCurrentValue && rule?.min) {
 yupType = yupType.min(rule.min);
 }
 if (!isEmpyCurrentValue && rule?.max) {
 yupType = yupType.max(rule.max);
 }
 if (!isEmpyCurrentValue && !rule?.allowDecimal) {
 // by default decimal is allowed
 yupType = yupType.integer();
 }
 break;
 case 'date':
 yupType = Yup.date();
 break;
 case 'option':
 yupType = Yup.array();
 break;
 case 'multiple_option':
 yupType = Yup.array();
 break;
 default:
 yupType = Yup.string();
 break;
 }
 if (required) {
 const requiredError = `${name} is required.`;
 yupType = yupType.required(requiredError);
 }
 try {
 yupType.validateSync(currentValue);
 } catch (error) {
 return error.message;

The generateValidationSchemaFieldLevel function takes two parameters: currentValue and field.
currentValue represents the current value of the field being validated, while the field parameter
holds the JSON structure of the question field, including details like id, name, type, required, and
rule.

This function performs validation based on the field's type. It uses a switch statement to handle
different field types and applies specific validation rules accordingly. It also checks for the required
parameter to enforce mandatory field validation.

By using this design, the software ensures consistent and reliable validation for various field types.
Each field's validation rules are applied based on its specific type. The function also ensures that
required fields are properly validated, maintaining data integrity and adhering to user-defined
validation criteria.

The below code shows minimal requirements to use the form component:

Below explanation illustrates the step-by-step workflow of the NMIS mobile app, ensuring a
seamless and user-friendly experience for data collection, user management, form selection,
survey duration tracking, form navigation, and submission handling.

 }
};

Example of Usage

import React from 'react';
import { FormContainer } from '../form';
import * as formDefinition from '../form/example-form.json';

const FormPage = () => {
 return (
 <FormContainer forms={formDefinition} initialValues={{}} />
);
};

export default FormPage;

Data Collection Workflow

At the beginning of the app, the user is prompted to grant permissions for accessing the camera,
location, and files on their device. This ensures that the app can utilise these features for data
collection and other functionalities.

Ask Permissions

The Input Assignment Code page is a crucial step in the NMIS mobile app's data collection
workflow. This page serves as the entry point for enumerators to access the forms assigned to
them. Here's a more detailed explanation of the Input Assignment Code page:

1. Purpose: The Input Assignment Code page aims to validate the enumerator's assignment
by requiring them to enter a specific code assigned to them by the administrator. This
code acts as a unique identifier for the enumerator's assigned tasks and helps filter the
relevant forms for data collection.

2. Internet Connection Requirement: To ensure accurate assignment code verification,
an active internet connection is necessary for the Input Assignment Code page. The app
checks for connectivity before presenting the page. If no internet connection is available,
the app displays an "offline page" informing the enumerator about the need for an
internet connection to proceed.

3. User Interaction: Enumerators are prompted to enter the assignment code through an
input field or a dedicated form on the Input Assignment Code page. The app may provide
a clear explanation or instructions to assist enumerators in finding and entering the
correct code.

4. Assignment Code Validation: Once the enumerator submits the assignment code, the
app verifies its authenticity and relevance. The code is validated against the server's
records to ensure that it corresponds to the enumerator's assigned tasks. If the provided
assignment code is incorrect or invalid, the app displays a popup notification to inform the
enumerator of the error.

5. Filtered Forms Retrieval: Upon successful validation of the assignment code, the app
retrieves the relevant forms assigned to the enumerator from the server. The forms are
filtered based on the administrative cascade sources associated with the assignment
code. This ensures that enumerators only have access to the forms that are specifically
assigned to them, streamlining the data collection process.

Since there is no user information available initially, the user is directed to the "Add User" page. At
least one user needs to be added to proceed. Users can be added with or without a password. This
page is displayed as the first step once a session is available. This page allows enumerators to
create user profiles within the app. Here's a more detailed explanation of the Add User page:

1. Purpose: The Add User page serves the purpose of enabling enumerators to create user
profiles within the NMIS mobile app. It ensures that each enumerator has a unique identity
and allows for personalised data collection.

2. User Profile Creation: On the Add User page, enumerators can input relevant
information to create their user profiles. This typically includes details such as their name
and password.

3. User Authentication: The Add User page may also provide the option for enumerators to
set up a password for their user profiles. This authentication feature ensures that only

Input Assignment Code Page

Add User Page

authorised individuals can access and utilise the app using their designated user
accounts.

4. User Account Flexibility: The Add User page allows for user accounts to be created with
or without a password. This flexibility accommodates varying security requirements and
administrative preferences. Enumerators can choose the appropriate account setup based
on their specific needs.

5. Accessibility upon Session Availability: The Add User page is the initial page
displayed when a session becomes available in the app. Enumerators are prompted to
create their user profiles before proceeding to other data collection activities.

Once a user is added, the user is directed to the "Survey Selection" page. This page displays the
available surveys/forms for the user to select from, presenting an overview of the options for data
collection.

1. Purpose: The Survey Selection page serves as the central hub where enumerators can
browse and select surveys or forms specific to their assigned tasks. It provides an
overview of available surveys and relevant statistics, aiding in efficient data collection.

2. User-Specific Surveys: The Survey Selection page displays surveys or forms based on
the assignment code entered earlier. All users with the same assignment code will have
access to the same set of surveys. This ensures consistency among enumerators working
on the same project and facilitates centralised data collection.

3. Survey List and Statistics: Enumerators are presented with a list of surveys or forms
relevant to their assignment code. Each survey entry includes basic statistics, such as the
number of submitted responses or other relevant metrics. These statistics offer valuable
insights into the progress of data collection and help enumerators make informed choices.

4. Intuitive User Interface: The Survey Selection page is designed with an intuitive user
interface, allowing enumerators to navigate through the available surveys easily. Clear
navigation elements, search functionality, or filtering options may be provided to enhance
usability and enable efficient survey selection.

After selecting a survey/form, the user is presented with options to perform actions related to the
selected form. The available actions include starting a new survey, editing a saved submission, or
viewing a submitted submission. This single page provides enumerators with clear navigation
options for managing the selected form. Here's a more detailed explanation:

1. Purpose: The "Select Action from Selected Form" page aims to provide enumerators with
clear and distinct actions they can take regarding the selected form. It serves as a
centralised control panel for managing the form and offers intuitive navigation options.

2. Single Page Design: The decision to have a single page with the three buttons -
Preview, Start New, Edit Saved Submission, and View Submitted Submission - is to present
enumerators with a comprehensive overview of the available actions in a clean and
straightforward manner. This layout minimise confusion and allows for easy access to

Survey Selection Page

Select Action from Selected Form

different functionalities.
3. Preview Button: The Preview button enables enumerators to access a preview of the

selected form. By clicking this button, enumerators can review the form's structure,
questions, and any other relevant details before proceeding with data collection. This
feature helps them become familiar with the form's content and layout.

4. Start New Button: The Start New button initiates a new data collection session for the
selected form. Enumerators can begin entering data and providing responses based on
the form's questions. This button is used when starting a fresh data collection process for
the selected form.

5. Edit Saved Submission Button: The Edit Saved Submission button allows enumerators
to modify a previously saved but incomplete submission for the selected form. By clicking
this button, enumerators can access the partially completed submission and make any
necessary changes or additions.

6. View Submitted Submission Button: The View Submitted Submission button provides
access to previously submitted and completed submissions for the selected form.
Enumerators can review the data they have previously submitted, ensuring data accuracy
and allowing for reference purposes.

This process combines three key elements: The Timer, Question Group Navigation, and
Submission. Here's a detailed explanation of how these components work together:

1. The Timer:
When the enumerator starts a new data collection session for a selected form, a
timer is initiated in the background. The timer tracks the duration of the survey from
the moment it is started until it is submitted. This feature provides valuable insights
into the time taken for each survey and helps monitor data collection efficiency.

2. Question Group Navigation:
To streamline the data collection process and avoid overwhelming the enumerator,
not all question groups are displayed simultaneously. Instead, the form is divided
into logical sections or question groups. Enumerators proceed through the form by
answering questions within the current question group.
The app enables question group navigation by presenting navigation buttons, such
as "Next" and "Previous." The "Next" button is disabled until all questions within the
current group are completed. Once the enumerator finishes answering the
questions, the "Next" button becomes active, allowing them to proceed to the next
question group.
This approach helps maintain focus and clarity, guiding enumerators through the
form step-by-step and reducing the risk of missing or skipping questions.

3. Submission:
Once the enumerator completes all the questions in the form, the app provides a
final step: the submission process. At this stage, the "Next" button for the question
group transforms into a "Submit" button.
Clicking the "Submit" button submits the completed form to the server, finalising the
data collection process. The app may display a confirmation prompt to ensure the

Starting The Submission

enumerator intends to submit the form.
Upon submission, the collected data is securely transmitted to the server for further
processing and analysis. The enumerator receives a confirmation message or
notification, indicating a successful submission.

In addition to the primary submission workflow, there are an additional behaviour that enhances
user control and flexibility. This feature allows users to utilise the back button on their Android
device and provides options for managing forms, saving submissions, and selecting language
preferences. Here's a detailed explanation:

Back Button Confirmation:

When users click the back button on their Android device while in the midst of data collection, a
confirmation popup appears. This popup offers users a choice between two options:

Save and Exit: Users can choose to save the current submission and exit, allowing them
to resume data collection from the same point at a later time. The saved submission is
stored for future retrieval and modification.
Exit without Saving: Users can opt to exit the current form without saving the
submission. This choice allows them to return to the form selection screen without storing
any incomplete data.

Kebab Menu Options:

The NMIS mobile app includes a three dots menu, located in the top-right corner of the screen,
which provides additional options in submission:

Save and Exit: This option allows users to save the current submission and exit the form,
ensuring that progress is retained for future continuation.
Exit without Saving: This option enables users to exit the form without saving the
submission, providing a quick way to return to the form selection screen.
Language Selection: The three dots menu includes the language selection feature,
allowing users to choose their preferred language for the app's interface. By selecting
their desired language, users can customise the app to suit their language preference.

To support the functionality of the NMIS mobile app, certain back-end API endpoints need to be
implemented. These endpoints facilitate communication between the mobile app and the server,
enabling various operations such as retrieving form lists, fetching individual form details, and
syncing submissions. By interacting with these endpoints, the mobile app can seamlessly integrate
with the back-end system and provide a smooth user experience. Here are the key API endpoints
required for the NMIS mobile app:

Back Button Confirmation and Three Dots Menu Options

Back-end API Endpoints

Endpoint: /auth
Method: POST
Request Body:

{"code": "<assignment_code_provided_by_admin>"}

Response:

{
 "message": "Success",
 "formsUrl": [
 {
 "id": 519630048,
 "url": "/forms/519630048",
 "version": "1.0.0"
 },
 {
 "id": 533560002,
 "url": "/forms/533560002",
 "version": "1.0.0"
 },
 {
 "id": 563350033,
 "url": "/forms/563350033",
 "version": "1.0.0"
 },
 {
 "id": 567490004,
 "url": "/forms/567490004",
 "version": "1.0.0"
 },
 {
 "id": 603050002,
 "url": "/forms/603050002",
 "version": "1.0.0"
 }
],
 "syncToken": "Bearer eyjtoken"
}

Get the List of Assigned Forms

Example:

curl -X POST -d "code=testing123" -s http://localhost:8080/auth | jq

Endpoint: /forms/{formId}
Method: GET
Response:

Return the JSON representation of the form

Endpoint: /sync
Method: POST
Request Headers:

Content-Type: application/json
Authorization: Bearer <syncToken>

Request Body:

{
 "name": "Iwan - 30 - Purbalingga",
 "submitter": "Iwan Firmawan",
 "duration": 2,
 "submittedAt": "2023-06-22T01:52:57.357Z",
 "answers": [
 {
 "12352546": "value1",
 "307454380": "value2"
 }
]
}

Response:

{
 "message": "Success",
 "id": 123
}

Example:

Get Individual Form

Send Submission

https://wiki.cloud.akvo.org/books/mobile-app-for-national-management-information-system/page/low-level-design#bkmrk-example-json-form%3A

curl -s -X POST \
 --header "Content-Type: application/json" \
 --header "Authorization: Bearer eyjtoken" \
 --data '{
 "name": "Iwan - 30 - Purbalingga",
 "submitter":"Iwan Firmawan",
 "submittedAt": "2023-06-22T01:52:57.357Z",
 "duration":2,
 "answers":[{"12352546":"value1", "307454380":"value2"}]
 }' \
 http://localhost:8080/sync

These backend API endpoints provide the necessary functionality for the NMIS mobile app to
interact with the server and perform actions such as retrieving form lists, fetching form details, and
syncing submissions.

To ensure the robustness and reliability of the NMIS mobile app, a comprehensive testing strategy
will be employed, utilising the Jest testing framework. The testing approach will cover various
aspects of the app's functionality, including component views, user inputs, data submission, and
error handling. Here's an overview of the testing areas:

1. Component View and User Input Testing:
Unit tests will be conducted to verify the rendering and behavior of individual
components within the app's views. This includes testing the correct display of UI
elements, proper navigation between screens, and accurate rendering of form fields.
Interactive tests will be performed to simulate user interactions and inputs, ensuring
that input fields accept user data correctly, respond to user actions appropriately,
and display accurate feedback or validation messages.

2. Data Submission Testing:
Integration tests will be carried out to validate the end-to-end flow of data
submission. This includes simulating the complete data collection process,
populating form fields with sample data, and verifying that the submitted data is
properly processed and stored on the server.
Tests will be conducted to ensure that all required fields are correctly validated and
that data is submitted in the expected format. This includes testing scenarios where
all mandatory fields are filled, as well as cases where optional fields are left empty.

3. Error Handling Testing:

Testing Strategy

Error scenarios will be tested to ensure the app handles exceptions, errors, and
invalid inputs gracefully. This includes simulating network connectivity issues, server
errors, invalid user inputs, and unexpected system behaviors.
Error handling tests will verify that appropriate error messages are displayed to
users when errors occur, guiding them to take corrective actions or providing
relevant information to troubleshoot issues.

The testing strategy will involve writing test cases using Jest's testing framework. These tests will
cover a range of scenarios, including positive and negative cases, edge cases, and boundary
conditions, to ensure maximum test coverage and identify any potential issues or bugs.

1. Device Compatibility: It is assumed that the NMIS mobile app will be developed for
Android and iOS devices, targeting a specific minimum operating system version for each
platform. Compatibility with older device models may be limited due to hardware or
software constraints.

2. Internet Connectivity: The app assumes that users will have access to a stable internet
connection for certain features, such as data synchronisation and form retrieval. However,
the app is designed to handle offline scenarios, allowing users to collect data in the field
and sync when a connection becomes available.

3. Assignment Code Usage: The app assumes that assignment codes provided to
enumerators are valid and have been properly generated and assigned by the
administrators. It is also assumed that each code will correspond to a specific set of forms
and configurations for data collection.

4. Data Security and Privacy: The app assumes that appropriate security measures are
implemented on the server-side to protect user data and ensure privacy. It is assumed
that user authentication, data encryption, and access control mechanisms are in place to
safeguard sensitive information.

5. User Training and Familiarity: The app assumes that enumerators using the NMIS
mobile app have received proper training on its functionality and usage. It is expected
that users are familiar with basic mobile device operations and have a reasonable
understanding of data collection procedures.

6. Limited Budget for Device Acquisition: It is assumed that there may be limitations on
the budget available for acquiring mobile devices. Consequently, the app is designed to
be compatible with a range of device models, ensuring wider accessibility for enumerators
without the need for high-end or expensive devices.

7. Language Localisation: The app assumes that it will support multiple languages to
cater to diverse user groups. However, the initial implementation may focus on a primary
language, with plans to expand language support based on user demand and available
resources.

8. Server Infrastructure: The app assumes the presence of a reliable and scalable server
infrastructure to handle data synchronisation, form retrieval, and submission processing.

Assumption and Constraints

It is assumed that the server infrastructure can handle expected user load and concurrent
requests effectively.

9. Regular Maintenance and Updates: The app assumes that regular maintenance and
updates will be performed to address bugs, security vulnerabilities, and enhance
functionality based on user feedback and evolving requirements.

10. Regulatory Compliance: The app assumes compliance with relevant laws, regulations,
and data protection standards in the regions where it is deployed. It is assumed that
necessary measures will be taken to ensure compliance with data privacy, security, and
confidentiality requirements.

List of dependencies required for the development of the NMIS mobile app, including React Native
itself and other necessary libraries:

1. React Native: A JavaScript framework for building native mobile apps.
2. Leaflet: A JavaScript library for interactive maps, used for the geolocation type of form in

the NMIS app.
3. Pullstate: A lightweight state management library for React applications, providing an

easy and intuitive way to manage and share state across components.
4. React Native Elements: A UI component library for React Native, offering pre-designed

UI elements and components to enhance app development.
5. Formik: A popular form management library for React, providing a simple and efficient

way to handle form inputs, validation, and submission.
6. React Navigation: A routing and navigation library for React Native, allowing for easy

navigation between screens and managing app navigation flow.
7. Axios: A JavaScript library for making HTTP requests, used for communicating with the

server and retrieving data for the NMIS app.
8. Moment.js: A library for handling dates and times, providing utilities for parsing,

formatting, and manipulating dates in JavaScript.
9. Jest: A library for handling tests

Error handling is a critical aspect of the NMIS mobile app's development, aimed at providing a
seamless and user-friendly experience. As with any software application, various errors and
exceptions may occur during its usage. To ensure smooth operation and effective user guidance,
comprehensive error handling mechanisms have been implemented. The app employs a proactive

Dependencies

Error Handling

approach to detect and handle errors, offering clear and concise messages that assist users in
resolving issues. Below are some common errors that may arise during app usage, along with brief
explanations of each:

1. Invalid Assignment Code: Occurs when the user enters an incorrect or unrecognised
assignment code during the initial setup, prompting them to verify and re-enter the code.

2. Network Connection Failure: Arises when the app encounters connectivity issues, such
as a lack of internet connection or poor signal strength. Users are notified about the
problem and are guided to check their network settings or retry when a stable connection
is available.

3. Form Retrieval Failure: If the app fails to retrieve forms from the server, an error
message is displayed, suggesting users try again later or contact support for assistance.

4. Missing or Incomplete Data: Alerts users when attempting to submit a form with
mandatory fields left blank or incomplete, ensuring all required information is provided
before proceeding.

5. Server Error: Indicates server-related issues during data submission, such as database
connectivity problems or server timeouts. Users are informed about the error and
provided options to retry or seek further support.

6. Authentication Errors: Occur when there are authentication issues, such as invalid login
credentials or an expired session. Users are guided to re-enter correct information or re-
authenticate as required.

7. Unexpected App Crashes: In the event of unexpected errors or crashes, users receive
user-friendly error messages informing them of the issue and suggesting actions like
restarting the app or contacting support.

8. Input Validation Errors: Alert users to invalid data entries, such as incorrect phone
number formats or email addresses, and provide specific error messages to facilitate
proper data input.

9. Insufficient Permissions: Notify users when the app requires specific permissions to
access device features and guide them to grant the necessary permissions for proper app
functionality.

10. General Error Handling: Implement a robust error handling mechanism to catch and
handle any unforeseen errors or exceptions, ensuring users receive informative and
helpful error messages for effective troubleshooting and problem resolution.

Ensuring optimal performance is essential for delivering a smooth and responsive user experience
in the NMIS mobile app. The following performance considerations have been taken into account:

1. Efficient Rendering: Techniques such as minimising unnecessary re-renders and
utilising memoisation will be implemented to optimise component rendering. This
improves CPU and memory usage efficiency, resulting in a more responsive user interface.

Performance Considerations

2. Network Efficiency: To reduce latency and data transfer, network requests will be
optimised. Methods like data compression, caching, and request bundling will be
employed to enhance network efficiency and decrease load times for data synchronisation
and server interactions.

3. Image and Media Optimisation: Images and media files used within the app will be
optimised to minimise file size while maintaining acceptable quality. Image compression
and lazy loading techniques will be applied to improve loading times and reduce data
consumption.

4. Code Optimisation: JavaScript code will be optimised by eliminating unnecessary
computations, optimising algorithms, and minimising function call overhead. Minification
and bundling techniques will be utilised to reduce file sizes, resulting in faster app loading
and startup times.

5. Memory Management: Effective memory management techniques, such as efficient
data structures and proper resource cleanup, will be employed to minimise memory
consumption. This prevents memory leaks and ensures app stability during prolonged
usage.

6. Offline Functionality: The app will be designed to support offline data collection,
enabling users to work without an internet connection. Local data storage and
synchronisation mechanisms will be optimised to ensure seamless offline functionality and
efficient data syncing upon connection restoration.

7. Performance Monitoring and Optimisation: Performance metrics will be monitored
and analised using suitable tools and techniques. This includes profiling app performance,
identifying bottlenecks, and optimising critical areas to enhance overall responsiveness
and efficiency.

8. Device Compatibility: Extensive testing will be conducted across a range of target
devices to ensure compatibility and performance on different hardware configurations.
Performance optimisations will be tailored based on device capabilities to provide an
optimal experience for users.

9. Scalability: The app's architecture will be designed to handle increased user loads and
growing data volumes. Scalability considerations, such as efficient database design,
caching mechanisms, and load balancing, will be implemented to maintain performance
as the app scales.

1. Security Breach: Implement robust encryption algorithms and secure communication
protocols to safeguard user data. Regularly perform security audits and updates to

Risks and Mitigation Strategies

address vulnerabilities and ensure compliance with security standards.
2. Data Loss or Corruption: Implement regular data backups and utilise reliable data

storage mechanisms. Employ redundancy measures and perform data integrity checks to
minimise the risk of data loss or corruption.

3. Inadequate Performance: Conduct thorough performance testing to identify and
address any bottlenecks or performance issues. Optimise code, queries, and server
configurations to enhance app responsiveness and scalability.

4. Compatibility Issues: Perform compatibility testing across various devices, operating
systems, and screen sizes. Adhere to industry standards and best practices to ensure the
app functions correctly across different platforms and configurations.

5. User Adoption Challenges: Conduct user testing and gather feedback throughout the
development process to identify and address usability issues. Provide clear
documentation, tutorials, and user support to enhance user adoption and satisfaction.

6. Lack of Internet Connectivity: Provide clear guidance on the app's offline mode and
syncing process.

7. Integration Challenges: Conduct thorough integration testing with external systems or
APIs to identify and address any compatibility or connectivity issues. Collaborate closely
with third-party providers and ensure proper documentation and support are available.

8. Inadequate Training and Support: Develop comprehensive training materials and
provide training sessions to users to ensure they understand how to use the app
effectively. Establish a dedicated support system to address user inquiries and issues
promptly.

9. Budget Overrun: Implement a well-defined budget plan and regularly monitor expenses
throughout the project. Prioritise essential features and conduct thorough cost estimation
to ensure alignment with the allocated budget.

10. Scope Creep: Establish a clear scope and change management process. Regularly
review and assess requested changes, evaluating their impact on timelines and resources.
Implement proper communication and documentation to manage scope effectively.

11. Lack of User Feedback: Actively seek user feedback through surveys, feedback forms,
or user testing sessions. Engage users in the development process and incorporate their
suggestions and needs into future updates.

12. Regulatory Compliance Issues: Conduct thorough research to understand applicable
regulations and standards. Implement necessary measures to ensure compliance, such as
data privacy protections and adherence to industry-specific guidelines.

13. Project Delays: Develop a comprehensive project plan with realistic timelines and
milestones. Regularly monitor progress, identify potential bottlenecks, and allocate
sufficient resources to mitigate delays effectively.

14. Inadequate Testing: Implement a robust testing strategy, including unit testing,
integration testing, and user acceptance testing. Conduct thorough test coverage and
prioritise test case creation to identify and rectify potential issues.

15. Lack of Scalability: Design the app with scalability in mind, considering future growth
and increasing user demands. Implement scalable architecture and regularly assess
performance to ensure the app can handle increased usage.

16. Insufficient User Training: Develop comprehensive training materials and provide
ongoing user training sessions.

17. User Privacy Concerns: Implement strong privacy measures, such as data
anonymisation and user consent mechanisms. Comply with relevant data protection
regulations and clearly communicate the app's privacy policy to users.

18. Limited User Acceptance: Conduct thorough user acceptance testing to identify and
address any usability issues or gaps in user expectations. Incorporate user feedback and
iterate on the app's design and functionality to enhance user acceptance.

19. Technical Dependencies: Identify and manage dependencies on external systems or
APIs by establishing clear communication channels and integration protocols. Have
contingency plans in place to handle any disruptions or changes in dependencies.

1. Project Setup
Set up the project repository on GitHub.
Create initial project structure and configuration.
Establish Asana project board for task management.
Define project milestones and deliverables.

2. Requirements Gathering and Analysis
Collaborate with all the team to gather and refine project requirements.
Conduct meetings and discussions to identify key features and functionalities.
Document the finalised requirements and create a functional specification.

3. Design and Prototyping
Collaborate with the designer to create the app's UI/UX design using Figma.
Iterate on the design, incorporating feedback from stakeholders.
Develop interactive prototypes for user testing and validation.

4. Development
Break down the project into smaller tasks and allocate them among the developers.
Implement the app's core functionality, adhering to the established design and
requirements.
Utilise GitHub workflow for version control, code reviews, and pull request
management.
Employ Asana for task tracking, assigning tasks to developers, and tracking
progress.

5. Testing and Quality Assurance
Develop and execute test cases to ensure the app functions as intended.
Perform unit testing, integration testing, and user acceptance testing.
Identify and resolve any bugs or issues encountered during testing.
Utilise GitHub workflow for automated testing, continuous integration, and release
management.

6. Documentation

Implementation Plan
Task Breakdown

Create comprehensive documentation, including installation instructions, usage
guidelines, and API references.
Document the project's architecture, design decisions, and implementation details.
Maintain up-to-date documentation throughout the development process.

7. Deployment and Release
Prepare the app for deployment, including configuring server infrastructure and
ensuring scalability.
Utilise GitHub workflow for automated build processes, continuous integration, and
release management.
Conduct final testing and quality assurance checks before releasing the app to
production.

With three developers and the project supervisor also working as a developer, tasks will be
distributed based on expertise and workload. The project manager will oversee task coordination,
ensure timely progress, and provide overall project guidance.

Phase Duration (in days)

Project Setup 2

Requirements Gathering and Analysis 3

Design and Prototyping 5

Development 30

Testing and Quality Assurance 7

Documentation 3

Deployment and Release 2

Asana will be used for task management, allowing for task assignment, progress tracking, and
collaboration among team members. GitHub will serve as the repository for version control, code
management, and pull request reviews. GitHub workflow will automate testing, build processes,
and release management.

By following this implementation plan, utilising the allocated timelines and utilising Asana for task
management, GitHub for version control, and GitHub workflow for testing, build, and release, the
team can effectively coordinate and deliver the NMIS mobile app within the specified time-frame
while ensuring quality and adherence to project requirements.

To facilitate effective communication and collaboration among team members, the following Slack
channels will be utilised:

Channel Purpose

Timelines

Communication Channels

https://app.asana.com/0/home/1204165579737555

#proj-mis-mobile-app-module General discussions related to the NMIS mobile app module.

#proj-mis-mobile-app-tech Technical discussions specific to the NMIS mobile app module.

#proj-mis-app-dev-notification GitHub notifications and code coverage reports.

To provide comprehensive information and guidance on the usage and functionality of the NMIS
mobile app, the following documentation references will be made available:

1. README.md: The project's README file will serve as the primary source of
documentation. It will contain essential details about the app, including an overview,
installation instructions, setup guidelines, and basic usage examples. The README.md file
will be located in the root directory of the project repository and will be regularly updated
to reflect the latest changes and improvements.

2. Read the Docs: A dedicated documentation platform, such as Read the Docs, will be
utilised to host detailed documentation for the NMIS mobile app. This platform allows for
easy navigation, searchability, and accessibility of the documentation, making it
convenient for developers, contributors, and users to find the information they need. The
documentation will cover various aspects of the app, including installation, configuration,
usage guidelines, API references, and troubleshooting.

The documentation will provide step-by-step instructions, code samples, configuration examples,
and explanations of the app's features and functionalities. It will serve as a valuable resource for
developers, administrators, and users to understand how to set up, customise, and utilise the NMIS
mobile app effectively.

The development of the National Management Information System (NMIS) mobile app is an
important step towards enhancing data collection efficiency and improving the overall
management of national services. By utilising the power of JavaScript and React Native, the app

In the #proj-mis-mobile-app-module channel, there is a list of bookmarks accessible
anytime. These bookmarks serve as quick references to important resources, documents, or
discussions related to the NMIS mobile app module. They provide easy access to relevant
information for team members to quickly navigate and retrieve essential resources.

Documentation References

Conclusion

https://akvo.slack.com/archives/C0598HR7864
https://akvo.slack.com/archives/C05C0RZUFLK
https://akvo.slack.com/archives/C05BZP3AWS2
https://akvo.slack.com/archives/C0598HR7864

provides a user-friendly and efficient platform for enumerators in the field to collect data
seamlessly.

With a mobile-optimised interface and support for offline data collection, the NMIS app streamlines
the data collection process and eliminates the complexities associated with web-based forms.
Enumerators can easily access and fill out forms using various question types such as geolocation,
text, number, options, cascade, photo/video, and date. The optional dependency logic and
validation rules ensure the accuracy and integrity of the collected data.

The app's build parameters allow for customisation, enabling administrators to tailor the app to
their specific requirements. The server URL parameter ensures seamless integration with the NMIS
server, while the data sync interval parameter ensures efficient data synchronisation. The error
handling and logging, as well as the debug mode, contribute to a robust and stable app experience.

The implementation plan outlines the necessary steps and timelines for developing the NMIS
mobile app. With a team of developers, a project supervisor, a designer, and a project manager,
the project will be well-coordinated and efficiently executed. Communication channels such as
Slack will facilitate effective collaboration, while tools like Asana and GitHub will aid in task
management, version control, and continuous integration.

By prioritising security considerations, the app ensures the protection of user data through data
encryption, secure communication, and user authentication mechanisms. Performance
considerations are also taken into account to provide a fast, responsive, and optimised user
experience.

The project concludes with thorough documentation, testing strategies, and adherence to
development best practices. Through regular updates, documentation references, and continuous
improvement, the NMIS mobile app will meet the needs of national services and contribute to more
efficient data management and decision-making processes.

Revision #48
Created 13 June 2023 16:59:39 by Deden Bangkit
Updated 17 June 2024 05:00:22 by Galih Pratama

