
This guide provides an overview of common API modules used for Remote Data Collection,
including descriptions of their functions, how to use them, and examples of when they might be
useful. This article is a valuable resource for understanding the various API modules available and
how to make the most of them.

Administrative Division
Administrative Category
Administrative Entity

API Modules for MIS

The administrative division module is a common API module used for remote data collection that
provides information about geographical boundaries, such as countries, states, and municipalities.
This module is particularly important for the output of the Remote Data Collection (e.g web-app
that involve maps visualization and data filtering). By using the administrative division module, we
can easily filter data by location and create interactive maps that highlight specific regions of
interest.

One common use case is for creating a cascading dropdown menu or hierarchical form, where the
options available in one dropdown depend on the selection made in the previous dropdown. For
example, if a user selects "Indonesia" in the first dropdown, the second dropdown would populate
with the province in the "Indonesia", and so on.

In short, the administrative division module is a crucial building block for many different types of
remote data collection applications, and its accurate and up-to-date information can improve the
quality and usefulness of many other API modules that rely on location-based data.

When working with geographical data, it is often desirable for the administrative data to match
with a shapefile. A shapefile is a popular file format for representing geographic data, and it
consists of several files that together define the boundaries of the geographic features.

Ideally, the administrative data used in your API should match with the administrative boundaries
defined in a shapefile. This is because shapefiles provide a standard format for representing
geographic data and can be used by many different mapping and visualization.

Matching administrative data with a shapefile can also help to ensure the accuracy and consistency
of your geographic data. Shapefiles are typically created and maintained by government agencies
or other authoritative sources, and they are often updated regularly to reflect changes in
administrative boundaries.

Here are the general steps you would need to follow to create a seeder for a shapefile:

Administrative Division

Requirements

In terms of requirements, including administrative data that matches with a shapefile may
be necessary if we plan to use our API with mapping or visualization library that require
geojson.

1. Convert the shapefile to a format to geojson. There are several tools available for this,
such as QGIS or mapshaper.

2. Write a script to read the geojson and populate your Administration table with the
relevant data. This script should read the geojson and insert new rows into the
Administration and Administration Level table for each administrative division, including
its ID, parent ID (if applicable), and name.

3. Run the seeder script to populate your Administration table with the data from the
geojson.

The database schema you provided has four fields: id , parent_id , name , and level . The id field
represents the unique identifier for each administrative division, while the parent_id field
represents the ID of the parent division (if applicable). Finally, the name field stores the name of
the division.

Here's an example of how you might define a Django model to represent this schema:

Models

from django.db import models

class AdministrationLevel(models.Model):

 id = models.IntegerField(primary_key=True)

 name = models.CharField(max_length=255)

 def __str__(self):

 return self.name

class Administration(models.Model):

 id = models.IntegerField(primary_key=True)

 parent_id = models.IntegerField(null=True, blank=True)

 name = models.CharField(max_length=255)

 level = models.ForeignKey(AdministrationLevel, on_delete=models.CASCADE)

 def __str__(self):

 return self.name

The parent_id field is defined with null=True and blank=True, which means that it can be
empty or null.

https://geojson.org/
https://mapshaper.org/

By defining this model, we can easily query and manipulate administrative divisions in our Django
application. For example, we might use the following code to retrieve all administrative divisions
with a parent ID of 42:

This would retrieve all administrative divisions that have 42 as their parent ID and allow us to
perform further processing.

Here's an example of how we might define our API endpoints using the Django REST Framework:

parent_division = Administration.objects.get(id=42)

child_divisions = Administration.objects.filter(parent_id=parent_division.id)

API Endpoint

Serializer

from rest_framework import serializers

from .models import AdministrationLevel, Administration

class AdministrationLevelSerializer(serializers.ModelSerializer):

 class Meta:

 model = AdministrationLevel

 fields = ('id', 'name')

class AdministrationSerializer(serializers.ModelSerializer):

 level = AdministrationLevelSerializer()

 class Meta:

 model = Administration

 fields = ('id', 'parent_id', 'name', 'level')

Views

from rest_framework import viewsets, routers

from .models import Administration

from .serializer import AdministrationSerializer

class AdministrationViewSet(viewsets.ReadOnlyModelViewSet):

 queryset = Administration.objects.all()

 serializer_class = AdministrationSerializer

 def list(self, request, *args, **kwargs):

 # Optional filtering by administrative level

 level_id = self.request.query_params.get('level_id', None)

 if level_id is not None:

 self.queryset = self.queryset.filter(level__id=level_id)

 return super().list(request, *args, **kwargs)

router = routers.DefaultRouter()

router.register(r'administrations', AdministrationViewSet)

Results

[

 {

 "id": 2,

 "parent_id": 1,

 "name": "Indonesia",

 "level": {

 "id": 2,

 "name": "Country"

 }

 },

 {

 "id": 4,

 "parent_id": 1,

 "name": "Province",

 "level": {

 "id": 2,

 "name": "West Java"

 }

 }

]

The Administrative Category module is a way to categorize administrative divisions based on their
type and hierarchy. Each administrative division can belong to one or more categories, which might
include categories like habitation (e.g rural, urban), land condition (dry, wet). These categories can
be used to filter and group data within the API.

This model represents the type of administrative division type, such as Rural or Urban. It might
include fields like name or description. Example:

id parent_id name description

1 null Habitation A geographic area in which
to live

2 1 Rural A geographic area that is
located outside towns and
cities

3 1 Urban A geographic area that is
located in cities

Administrative Category

Models

class AdministrationTypeCategory(models.Model):

 name = models.CharField(max_length=255)

 parent_category = models.ForeignKey('self',

 null=True,

 blank=True,

 related_name='children',

 on_delete=models.CASCADE)

 description = models.TextField()

class AdministrationCategories(models.Model):

 administration = models.ForeignKey(

 Administration,

 on_delete=models.CASCADE)

 administration_type_category = models.ForeignKey(

 AdministrationTypeCategory,

 on_delete=models.CASCADE)

Administration Type Category

This model represents the administrative categories for a given administrative entity. Example:

id administration_id administration_type_category_id

1 42 1

Administration Categories

The Administrative Entity module is an extension of the Administrative Division module, and it
provides a way to represent additional entities within an administrative boundary. An
administrative entity is typically a geographic area that is governed by a specific administrative
body or organization. For example, an administrative entity might be a city, a town, a village, or a
neighborhood.

In the context of an API, the Administrative Entity module can be used to provide additional
information about the entities within each administrative boundary. This information might include
the name of the entity, its type (e.g. city, town, village), and any relevant metadata (e.g.
population, area, number of schools).

The Administrative Entity module is typically used in conjunction with the Administrative Division
module, as each administrative entity should be associated with the administrative division that
contains it. This allows the API to provide a hierarchical view of the administrative boundaries, from
the highest level (e.g. country) down to the lowest level (e.g. neighborhood).

One example use case for the Administrative Entity module is for adding schools and public
facilities within an administrative entity. By associating each school or facility with the appropriate
administrative entity, the API can provide a comprehensive view of the facilities available within
each area, and allow users to filter or search for facilities by location.

Overall, the Administrative Entity module provides a way to represent additional entities within an
administrative boundary and to provide more detailed information about the administrative
hierarchy. This can be useful for a wide range of applications, from urban planning to public health
to social services.

Administrative Entity

Models

class AdministrationAttributeDataType:

 text = 1

 number = 2

 option = 3

 FieldStr = {

 text: 'Text',

 number: 'Number',

 option: 'Option'

 }

This model represents the type of administrative entity, such as schools, health facilities, or parks.
It might include fields like name or description. Example:

id name description

1 Schools Schools available in the division

This model represents the attributes of a given administrative entity type, such as the name of the
school, the number of students, or the type of school. It might include fields like name, description,
or data type.

id administration_entity
_type_id

name data_type options

class AdministrationEntityType(models.Model):

 name = models.CharField(max_length=255)

 description = models.TextField()

class AdministrationEntityTypeAttribute(models.Model):

 administration_entity_type = models.ForeignKey(AdministrationEntityType,

on_delete=models.CASCADE)

 name = models.CharField(max_length=255)

 data_type = models.IntegerField(

 choices=AdministrationAttributeDataType.FieldStr.items(),

 default=AdministrationAttributeDatatType.text)

 options = models.JSONField(default=None, null=True)

class Entity(models.Model):

 administration = models.ForeignKey(Administration, on_delete=models.CASCADE)

 administration_entity_type = models.ForeignKey(AdministrationEntityType,

on_delete=models.CASCADE)

 address = models.CharField(max_length=255)

 coordinates = models.PointField()

class AdministrationEntityValue(models.Model):

 entity = models.ForeignKey(Entity, on_delete=models.CASCADE)

 attribute = models.ForeignKey(AdministrationEntityTypeAttribute, on_delete=models.CASCADE)

 value = models.JSONField()

Administration Entity Type

Administration Entity Type Attribute

1 1 School Name 1 null

2 1 School Type 3 ["Boys School","Girl
School", "Public
School", "Private
School"]

3 1 Number of Students 2 null

This model represents the relationship between an administrative entity and the division that
contains it.

id administration administration_entity
_type_id

address coordinates

1 42 1 Jl. Kemang Raya
No.36, RT.12/RW.5,
Bangka, Kec.
Mampang Prpt., Kota
Jakarta Selatan,
Daerah Khusus
Ibukota Jakarta
12150

(-
6.262371400000001,
-
6.262371400000001)

This model represents the values of the attributes for a given administrative entity. It might include
fields like entity_id (the ID of the administrative entity), attribute_id (the ID of the administrative
entity attribute), and value (the value of the attribute for the entity).

id entity_id administration_entity_type_
id

value

1 1 1 SD Pelita Harapan Kemang

2 1 2 Private School

3 1 3 90

Entity

Administration Entity Value

